

STPA Step 4 Building Formal Scenarios

A New Scenario Approach

John Thomas

© Copyright 2024 John Thomas

Tutorial Objective

- These short tutorials are **not training classes**
- We cannot cover everything in these tutorial sessions.
- The objective is to introduce some of the core concepts so new attendees can follow the presentations this week.
- Training and practice with a qualified instructor are needed to apply these techniques and become proficient (as with most techniques). These short tutorials are subsets of larger training classes.

Any questions? Email me! <u>JThomas4@mit.edu</u>

New STPA scenario approach has been tested for 8 years

Examples:

- (Nuclear) A New Process for Building STPA Causal Scenarios, John Thomas, 2016 MIT STAMP Workshop
- (<u>Space</u>) A Process for STPA: STAMP Accident Model of HITOMI and Expansion to Future Safety Culture, John Thomas and Nancy Leveson (MIT), Masa Katahira and Naoki Ishimama (JAXA), Nobuyuki Hoshino (JAMSS), 2017 MIT STAMP Workshop
- (<u>Aircraft</u>) Systems Theoretic Process Analysis Applied to **Air Force** Acquisition Technical Requirements Development, Sarah Summers, MIT Thesis, 2017
- (Aircraft) STPA Applied to Manned-Unmanned Teaming, Jeremiah Robertson, MIT Thesis, 2019
- (Auto) STPA Applied to Autonomous Vehicles, Jeff Stafford (Renesas), John Thomas (MIT), 2019 MIT STAMP Workshop
- (Software) STPA Applied to AV Software, Shaun Mooney (Codethink), John Thomas (MIT), 2019
- (<u>Auto</u>) Application of Hierarchy to STPA: A Human Factors Study on Vehicle Automation, Rachel Cabosky, 2020, MIT Thesis (collaboration with **GM**)
- (Military Aviation) Evaluation of STPA for Aircraft Safety Assessment, US Army, 2021
- (Aviation) Rotary-Wing Aircraft Development: Cybersecurity and Safety STPA Status Report, MIT & MIT-LL, 2021
- (<u>Aviation</u>) A Top-Down, Safety-Driven Approach to Architecture Development for Complex Systems, Justin Poh, MIT Thesis, 2022
- (<u>Aviation</u>) System-Theoretic Safety Analysis for Teams of Collaborative Controllers, Andrew N. Kopeikin, MIT Dissertation, 2024
- (Communications) Brittany Bishop, MIT Thesis, 2024
- (<u>Software</u>) **Qualcomm**, 2023-2024
- (<u>Software</u>) Google, 2023-2024

In all cases, the new approach has found loss scenarios and causes that had been previously overlooked

New Scenario Approach Advantages and Disadvantages Observed

Disadvantages

- More rules and structure
- Takes longer to teach & learn
- Unclear if it takes longer to perform (less time in some cases)

Advantages

- The rules and structure provide more guidance
- Enables a more directed search, less ad-hoc and informal
- The <u>rationale</u> for the scenarios and how you found them is clearer.
- So far, the new process has always captured <u>additional cases</u> that were previously overlooked
- The top-down approach was <u>more scalable</u> to extremely complex systems compared to previous STPA attempts
- <u>Less repetition</u> in the results (shorter documentation, higher information density)
- Provides <u>clear exit criteria</u> to rigorously review and find gaps
- Enables <u>automation</u> of some parts of Step 4
- The formal structure can enable <u>mathematical proofs</u> for properties like scenario coverage
- Improved <u>consistency</u> and repeatability. Less dependence on who is doing the analysis.

Goals for new scenario approach

- Provide scenario guidance for new practitioners who may get stuck
- Provide a formal structure for scenarios (similar to UCA syntax)
- Provide a way to review scenario completeness and find gaps
- Handle more complexity: Implement a top-down strategy, not a backward search strategy.

STPA Step 3 Rigor: Unsafe Control Actions (UCA)

Can we make STPA Step 4 more like this?

© Copyright 2023 John Thomas

Forward vs. Backward Search

Top-Down Search

Nancy Leveson

Building Scenarios

- 1. Define small number of high-level scenarios
 - Start with broad, abstract scenarios
 - Consider each class of scenario factors
 - Easy to review, show coverage, completeness, etc.
- 2. Identify potential solutions
 - Requirements
 - Modify control actions
 - Modify types of feedback
 - Modify responsibilities
 - Etc.
- 3. Refine into more detailed scenarios (if solutions not found)
 - Include more design detail
 - Can be done in parallel with development

© Copyright John Thomas 2017

© Copyright John Thomas 2017

STPA Step 4B: Potential control actions not followed properly

© Copyright John Thomas 2017

Four Classes of Formal Scenarios

Four Classes of Formal Scenarios

© Copyright 2024 John Thomas

© Copyright 2024 John Thomas

<u>Class 1 Scenario Archetype:</u>

- Output: UCA-1: <Controller> provides <Control Action> when <Context>
- Input: Class 1: <Input> correctly showed that <Context>

General Transfer Function Concept

Class 1 Scenario Archetype:

- Output: UCA-1: <Controller> provides <Control Action> when <Context>
- Input: Class 1: <Input> correctly showed that <Context>

General Transfer Function Concept

Scenario Archetypes

UCA-2: <Controller> provides <Control Action> when <Context>

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _

Example: Mars Polar Lander

Unsafe Control Action (UCA): Computer provides Disable-Thruster cmd when spacecraft is in the air

UCA-2: Thruster Controller provides

- **Disable-Thruster Cmd**
- when spacecraft is in the air

Scenario Archetypes

- UCA: <Controller> provides _____ when _____
 <Input> to <Controller> correctly indicated ______

UCA-2: Thruster Controller provides

- Disable-Thruster Cmd
- when spacecraft is in the air

Scenario Archetypes

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- <Input> to <Controller> correctly indicated _____

UCA-2: Thruster Controller provides

Disable-Thruster Cmd

when spacecraft is in the air

Scenario Archetypes

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

UCA-2: <Controller> provides _____ when ____

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Refined Scenarios

Ask: Why would <Controller> make this decision?

UCA-2: <Controller> provides _____ when ___

Scenario Archetypes

- Class 1 Scenario Archetype: Inadequate Controller Behavior
- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Refined Scenarios

Why would <Controller> make this decision?

- Because <Controller> is designed to default to _____ if _____ (will ignore and)
- Because <Controller> also received _____, so it appeared reasonable to <Control Action>
- Because there is no other _____, so other control actions were not feasible
- Etc.

If you have trouble, a generic controller model can help you ask better questions & find actionable causes.

Generic Controller Model

Refining Class 1 Scenario Archetype: Inadequate Controller Behavior

Common causes of Scenario Archetype 1:

- Responsibilities (e.g., desired end states) that would produce this UCA
- B Control algorithms or decision-making rationale that would explain the UCA
 C Process models that would explain this UCA
- D Interpretation rules / process model updates that would explain the UCA
 - Internal controller states/modes that would explain the UCA (failure, lame duck mode, etc.)
 - Controller inputs (control actions, feedback, or other inputs) that would explain the UCA
 - E.g., Conflicting/contradictory inputs, inputs from another controller, etc.
 - If the input is another UCA, then make sure the new UCA is recorded in STPA Step 3. The new UCA will be analyzed using the same process.

UCA-2: <Controller> provides _____ when ___

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

<u>Responsibilities</u> <Controller> by design is responsible for always assigning _____ to every ____ (even if _____.)

Refined Scenarios

Discussion: Responsibilities can be:

Α

- Fixed (hardcoded, embedded in design of algorithm)
- Dynamic (provided in real-time as a control action input into the controller)
- Adaptive (developed and changed by the controller as needed)

UCA-2: <Controller> provides _____ when ____

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

<u>Control Algorithms</u> <Controller> control algorithm is designed to fall back onto _____ strategy if

Refined Scenarios

В

Class 4 Scenario Archetype:

UCA-2: <Controller> provides _____ when ___

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Refined Scenarios

Interpretation of inputs

D

In some situations, <Controller> will interpret _____ as an indicator of _____. This interpretation can underestimate ____, causing ____.

When <Feedback/input 1> conflicts with <feedback/input 2>, <Controller> may assume _____

When <feedback/input> is not available, <Controller> may assume ____

Scenario Archetypes

D

Refined Scenarios

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when
- <Input> to <Controller> correctly indicated

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Update Process Model

Unsafe PM Update	Unsafe Feedback or Inputs
PM-1 is not updated when _ PM-1 is the initial (default) belief before feedback/input received	Feedback/input is (or is not) provided when
PM-1 is updated incorrectly due to feedback/input that indicates	Feedback/input is provided when
PM-1 is updated too late (or early) due to	Feedback/input is delayed (or too early) when
PM-1 stops updating too soon before PM-1 continues to be updated too long after	Feedback/input is applied too long after (stopped too soon before)

Refined Scenarios

Update Process Model

Unsafe PM Update	Unsafe Feedback or Inputs
PM-1 is not updated when _ PM-1 is the initial (default) belief before feedback/input received	Feedback/input is (or is not) provided when
PM-1 is updated incorrectly due to feedback/input that indicates	Feedback/input is provided when
PM-1 is updated too late (or early) due to	Feedback/input is delayed (or too early) when
PM-1 stops updating too soon before PM-1 continues to be updated too long after	Feedback/input is applied too long after (stopped too soon before)

UCA-2: <Controller> provides _____ when ____

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Refined Scenarios

Controller States / Modes

E

- If <Controller> is in _____ mode, it will continue to <Control Action> using alternate input ____.
 - If <Controller> ____ is disabled, then <Controller> can _____.

UCA-2: <Controller> provides _____ when ____

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

F F <u>Other Inputs</u> <Controller> does not prevent

<Control Action> when alternate input _____ is received.

UCA-2: <Controller> provides _____ when ____

Scenario Archetypes

- Class 1 Scenario Archetype: Inadequate Controller Behavior
- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Refined Scenarios

Other inputs

_

F

Although <Input> is correct,
 the feedback from ____ may
 be incorrect and may cause
 <Controller> to

Four Classes of Formal Scenarios

STPA Step 4A: Identify scenarios that cause UCAs

STPA Step 4: Class 2 Scenario Archetype

STPA Step 4: Class 2 Scenario Archetype

UCA-2: <Controller> provides <Control Action> when <Context>

Class 2 Scenario Archetype:

 Feedback to <Controller> did not adequately indicate <Context>

- <Context> is true

STPA Step 4: Class 2 Scenario Archetype

UCA-2: <Controller> provides <Control Action> when <Context>

Discussion: The "Why" answers may come from SMEs, not the STPA practitioner. You may not be an expert in the system. The point is for you to use this framework to ask questions and approach the SMEs to find these answers.

[©] Copyright 2024 John Thomas

STPA Step 4: Class 2 Scenario Archetype

UCA-2: <Controller> provides <Control Action> when <Context>

Unidentified or

out-of-range disturbance

Changes over time

<Context>

Process output contributes to

system hazard

Class 2 Scenario Archetype

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Example: Mars Polar Lander

Unsafe Control Action (UCA): Computer provides Disable-Thruster cmd when spacecraft is in the air

UCA-2: Thruster Controller

provides

- Disable-Thruster Cmd
- when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

- <Feedback/Input> to <Controller> did not adequately indicate
 <Context>
- <Process> is actually <Context>

UCA-2: Thruster Controller

provides

- Disable-Thruster Cmd
- when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

- Touchdown feedback does not indicate it's in air
- <Process> is actually <Context>

UCA-2: Thruster Controller

provides

- Disable-Thruster Cmd
- when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

- Touchdown feedback does not indicate it's in air
- Lander is actually in the air

Scenario Archetypes

Refined Scenarios

Class 1 Scenario Archetype:

Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Ask: What can cause this Scenario Archetype?

Consider:

- 1) Failure causes
- 2) No failures

UCA-2: Thruster Controller provides Disable-Thruster Cmd when spacecraft is in the air

Example: Mars Polar Lander

Refined Scenarios

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

Class 2 Scenario Archetype: Inadequate feedback/information

- Touchdown feedback does not indicate it's in air
- Indicate it's in air
- Lander is in the air

What can cause this? 1) Failure causes 2) No failures

What does "no failure" mean?

• It means the sensors, etc., worked <u>as specified</u>

What does "touchdown sensor worked" mean?

• It means the sensor output was <u>as</u> <u>specified</u> for the sensor input

We know the sensor feedback was [NOT IN AIR]. What was the input?

• If output = [NOT IN AIR],

then input = [VIBRATION > X]

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Class 4 Scenario Archetype:

Refined Scenarios

Why?

- Because the ____metric is estimated from that uses different
- Because the _____ feedback is outdated due to _____ second feedback delay
- Etc.

Refining Class 2 Scenario Archetype: Inadequate Feedback/Information

Common causes of Scenario Archetype 2:

- Feedback/info missing from design/concept
- Feedback/info not provided
- Conflicting feedback/info
- Incorrect feedback/info provided
- Too early or too late (delayed) feedback/info
- Measurement inaccuracies
- Dropouts
- Corruption
- Content incomplete
- Feedback/info provided in a way the controller can't use
- Overloaded or too much feedback/info
- Etc.

Scenario Archetypes

Refined Scenarios

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when __
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Too early or too late info <Feedback> can be sent too early before _____ has occurred.

Class 4 Scenario Archetype:

Scenario Archetypes

Refined Scenarios

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

No info provided

<Feedback> is not provided when _____ is initialized, reset, or on power up.

Class 4 Scenario Archetype:

Scenario Archetypes

Refined Scenarios

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype: Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Overloaded or too much info

If <Process> is overloaded, then there might not be any indication that <Context>

Class 4 Scenario Archetype:

Discussion: These scenarios are used to help us think about mitigations. E.g., <Controller> currently has no feedback to indicate process overloading, so the design doesn't currently have any way to correct it.

Four Classes of Formal Scenarios

STPA Step 4: Class 3 Scenario Archetype

UCA-2: <Controller> provides <Control Action> when <Context>

Class 3 Scenario Archetype: Inadequate Control Execution

We need to look at how the UCA can be emulated due to interactions in this region.

Constructing Scenario Archetype 3:

- Suppose the UCA <u>did not</u> happen (invert the UCA). The controller provided a "safe" control action.
- BUT... something happened on the control path making it <u>as if</u> the UCA had occured

STPA Step 4: Class 3 Scenario Archetype

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype: Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype: Inadequate Control Execution

- <Controller> does not provide <Control Action> when <Context>
- <Process> receives a <Control Action> when <Context>

UCA-2: Thruster Controller provides Disable-Thruster Cmd when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

Class 3 Scenario Archetype: Inadequate Control Execution

- <Controller> does not provide <Control Action> when <Context>
- <Process> receives a <Control Action> when <Context>

[©] Copyright 2024 John Thomas

UCA-2: Thruster Controller provides Disable-Thruster Cmd when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

Class 3 Scenario Archetype: Inadequate Control Execution

- Controller <u>does not</u> provide Disable-Thruster Cmd when spacecraft is in the air
- Lander receives Disable-Thruster Cmd when spacecraft is in the air

[©] Copyright 2024 John Thomas

Scenario Archetypes

Refined Scenarios

Class 1 Scenario Archetype:

Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Inadequate Control Execution

- <Controller> does not provide <Control Action> when <Context>
- <Process> receives a <Control Action> when <Context>

Ask: What can cause this Scenario Archetype?

Class 4 Scenario Archetype:

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Inadequate Control Execution

- <Controller> does not provide <Control Action> when <Context>
- <Process> receives a <Control Action> when <Context>

Class 4 Scenario Archetype:

Refined Scenarios

Why?

- Some other <Controller> could generate <Control Action> and send it to ____
- <Controller> sends <Control
 Action> with Ignore bit set,
 but

Etc.

Discussion: How would <Controlled Process> know to ignore this? It might not know.

Four Classes of Formal Scenarios

STPA Step 4: Class 4 Scenario Archetype

UCA-2: <Controller> provides <Control Action> when <Context>

Class 4 Scenario Archetype: Inadequate Process Behavior

We need to look at how the UCA can be emulated due to interactions in this region.

Constructing Scenario Archetype 4:

- Suppose the UCA <u>did not</u> happen (invert the UCA), and <u>was not</u> received by the controlled process.
- BUT... something happened with the controlled process and its other interactions making it <u>as if</u> the UCA had been provided.

© Copyright 2024 John Thomas

STPA Step 4: Class 4 Scenario Archetype

© Copyright 2024 John Thomas

<Context>

<Context>

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated

Class 2 Scenario Archetype: Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

© Copyright 2024 John Thomas

UCA-2: Thruster Controller provides Disable-Thruster Cmd when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

© Copyright 2024 John Thomas

Class 3 Scenario Archetype: Inadequate Control Execution

- Controller <u>does not</u> provide Disable-Thruster Cmd when spacecraft is in the air
- Lander receives Disable-Thruster Cmd when spacecraft is in the air

Class 4 Scenario Archetype: Inadequate process behavior

- <Process> does not receive a <Control Action> when <Context>
- <Process> applies <Control Action> when
 <Context>

UCA-2: Thruster Controller provides Disable-Thruster Cmd when spacecraft is in the air

Example: Mars Polar Lander

Class 1 Scenario Archetype: Inadequate Controller Behavior

- Controller provides Disable-Thruster Cmd when spacecraft is in the air
- Touchdown Input to Controller correctly indicated it's in the air

- Controller <u>does not</u> provide Disable-Thruster Cmd when spacecraft is in the air
- Lander receives Disable-Thruster Cmd when spacecraft is in the air

Class 4 Scenario Archetype: Inadequate process behavior

- Thrusters do not receive Disable command (when spacecraft is in the air)
- Thrusters are disabled (when in the air)

Class 2 Scenario Archetype: Inadequate feedback/information

- Touchdown feedback does not indicate it's in air
- Lander is in the air

[©] Copyright 2024 John Thomas

Scenario Archetypes

Refined Scenarios

Class 1 Scenario Archetype:

Inadequate Controller Behavior

- <Controller> provides _____ when _
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Inadequate Control Execution

- <Controller> does not provide <Control Action> when <Context>
- <Process> receives a <Control Action> when <Context>

Class 4 Scenario Archetype:

Inadequate process behavior

- <Process> does not receive a <Control Action> when <Context>
- <Process> applies <Control Action> when <Context>

Ask: What can cause this Scenario Archetype?

Scenario Archetypes

Class 1 Scenario Archetype: Inadequate Controller Behavior

- <Controller> provides _____ when _____
- <Input> to <Controller> correctly indicated _____

Class 2 Scenario Archetype:

Inadequate feedback/information

- <Feedback/Input> to <Controller> did not adequately indicate <Context>
- <Process> is actually <Context>

Class 3 Scenario Archetype:

Inadequate Control Execution

- <Controller> does not provide <Control Action> when <Context>
- <Process> receives a <Control Action> when <Context>

Class 4 Scenario Archetype:

Inadequate process behavior

- <Process> does not receive a <Control Action> when <Context>
- <Process> applies <Control Action> when <Context>

Refined Scenarios

Why?

- <Process> may mechanically ____
- <Process> may run out of ____
- <Process> may see that _____ is full, in which case <Process> will automatically _____, which results in _____.
- If <Process> is in ____ mode, then all ____ will be ignored.

Scenario Archetype Generation

Control Action		Not providing causes hazard UCA-1	Providing causes hazard UCA-2	Too early, too late, Order UCA-3	Stopped Too Soon / Applied too long UCA-4	
Scenario Archetype				$\overline{\nabla}$	<u> </u>	, M
	UCA type 1: not providing caus hazard (UCA-#)	es UCA type 2: p hazard (UCA-#	roviding causes #)	UCA type 3: too early, order causes hazard (L		UCA type 4: stopped too soon, applied too long causes hazard (UCA-#)
Scenario Class 1: Unsafe Controller Behavior	1) <controller> doesn't provide <cmc 2)<controller> received feedback (or other inputs) that indicated <conte< td=""><td>2)<controller> re</controller></td><td>ceived feedback</td><td colspan="2">1)<controller> provides <cmd> too late/early/out of order 2)<controller> received feedback (or other inputs) that indicated <context> on time / in order</context></controller></cmd></controller></td><td>1)<controller> stops/continues providing <cmd> too soon/long 2)<controller> received feedback (or other inputs) that indicated <context> on time</context></controller></cmd></controller></td></conte<></controller></cmc </controller>	2) <controller> re</controller>	ceived feedback	1) <controller> provides <cmd> too late/early/out of order 2)<controller> received feedback (or other inputs) that indicated <context> on time / in order</context></controller></cmd></controller>		1) <controller> stops/continues providing <cmd> too soon/long 2)<controller> received feedback (or other inputs) that indicated <context> on time</context></controller></cmd></controller>
Scenario Class 2: Unsafe Feedback Path	1)feedback (or other inputs) receive by <controller> does not adequate indicate <context> 2)<context> is true</context></context></controller>			1)feedback (or other inputs) received by <controller> does not indicate <context> (too late/early/out of order) 2)<context> is true</context></context></controller>		1)feedback (or other inputs) received by <controller> does not indicate <context> (inappropriate duration) 2)<context> is true</context></context></controller>
Scenario Class 3: Unsafe Control Path	 1)<controller> does provide <cmd> when <context></context></cmd></controller> 2)<cmd> is not received by <control process> when <context></context></control </cmd> 	1) <controller> dc <cmd> when <c led 2)<controlled pro<br=""><cmd> when <c< td=""><td>context> pcess> receives</td><td colspan="2">1)<controller> does not provide <cmd> <context> (not too late/early/out of order) 2)<cmd> is received by <controlled process=""> <context> (too late/early/out of order)</context></controlled></cmd></context></cmd></controller></td><td>1)<controller> provides <cmd> with appropriate duration 2)<cmd> is received by <controlled process> with <context> (inappropriate duration)</context></controlled </cmd></cmd></controller></td></c<></cmd></controlled></c </cmd></controller>	context> pcess> receives	1) <controller> does not provide <cmd> <context> (not too late/early/out of order) 2)<cmd> is received by <controlled process=""> <context> (too late/early/out of order)</context></controlled></cmd></context></cmd></controller>		1) <controller> provides <cmd> with appropriate duration 2)<cmd> is received by <controlled process> with <context> (inappropriate duration)</context></controlled </cmd></cmd></controller>
Scenario Class 4: Unsafe Controlled Process Behavior	1) <cmd> is received by <controlled process> when <context> 2)<controlled process=""> does not respond by <></controlled></context></controlled </cmd>	1) <cmd> is not re <controlled pro<br=""><context> 2)<controlled pro<br=""><></controlled></context></controlled></cmd>	cess> when	 1)<cmd> is not received by process> <context> (not t of order)</context></cmd> 2)<controlled process=""> res <context> (too late/early,</context></controlled> 	oo late/early/out	1) <cmd> is received by <controlled process> with appropriate duration 2)<controlled process=""> does not respond by <> with <context> (inappropriate duration)</context></controlled></controlled </cmd>

STPA Scenarios should cover:

Figure 2.19: Generic control loop illustrating 1) the control path and 2) other factors that can affect the controlled process

How to run an STPA project

Let's discuss who would do this and how they would coordinate with others

STPA Project Participants

