AIRCRAFT CERTIFICATION ASSUMPTIONS AND STPA

MIT STAMP WORKSHOP 2024

Presented by:

Dr John Thomas (MIT) Kyle Ryan (The Boeing Company) Dave Cummins (Bell Textron Inc)

Credit also to Aaron Katz (NATCA)

TRANSPONDER & TCAS DIAGRAM

- Secondary surveillance RADAR
- Provides primary flight details to ATC Controller
- Provides proximity alerts of other aircraft to flight crew
- Data based on aircraft systems and navigation trace

Image ref: airfactsjournal.com

AIR TRAFFIC CONTROL (ATC) SCREEN VIEWS

Image ref: aviation.stackexchange.com

Image ref: FAA.gov/air_traffic

PILOT'S PRIMARY FLIGHT DISPLAY (PFD)

Image ref:

ow-does-pilot-land-

ILS (Instrument MEP SPI FLARE Landing System) 146 6000 IKS /155° Glideslope DME 0.4 CMD 200 ILS 180 Barometric altitude Radio Altitude (RA) 60 (appears below certain height) Approach minimums for visual acquisition of runway (depends on 120 approach category) 20 100 -200 200 **QNH** Setting 1005 HPA **GS 152** https://www.aircraftnerds.com/2018/11/h GLIDE SLOPE plane.html#google vignette

EXAMPLES FROM TRADITIONAL CERTIFICATION PROCESS

SOME TRANSPONDER FAILURE CONDITIONS

Failure Condition	Flight Phase	Env	Failure Effects	Class	Assumptions	The assumptions bound the failure
Loss of transponder data to ATC			Loss of aircraft transponder data on ATC screen. Slight reduction in safety margins and increase in flight crew workload to maintain safe separation.	MIN	ATC and flight crew will recognize a loss of transponder data and revert to an existing procedure/primary radar.	effects, classifications and design level or rigor. <u>But are they valid?</u>
Malfunction of transponder data to ATC	All phases	IFR	Incorrect aircraft transponder data displayed on ATC screen. Misleading position data presented to controller. Significant reduction in safety margins and	MAJ	ATC and flight crew conduct regular cross-check of assigned flightpaths/levels which will identify incorrect transponder data to the flight crew/ATC. This failure may significantly	
uata to AIC			increase in flight crew workload to maintain safe separation.		mislead the controller/flight crew or may take some time to be recognized (delayed awareness of failure).	

The overall assumption here is that the aircraft will not violate safe separation constraints!

TRADITIONAL REQUIREMENTS GENERATED

Reliability and level of rigor

- Loss of Transponder shall occur less than or equal to 1E-5 failures per flight hour
- Malfunction of Transponder shall occur less than or equal to 1E-5 failures per flight hour
- Transponder shall be developed to at least DAL C

MAJOR FAILURE CONDITION

Training and policy

- Flight manual instructions, likely to follow an established procedure in the event of loss/malfunction
- Regular simulator training requirement for flight crews to practice lost transponder scenarios
- Flight crew and ATCO readback of assigned squawk codes and instructions to highlight errors

(1) The level of reliability, redundancy, and design rigor is reduced by the assumptions made in the failure condition assessment!
(2) There is absolutely nothing about the ATC controller, or their equipment in these requirements!

CAN STPA HELP? STPA EXAMPLE.

STPA STEP 1: LOSSES AND HAZARDS

Ll: Loss of life or serious injury to aircraft occupants

H1: Aircraft violates minimum separation from other traffic.

H2: Aircraft violates minimum separation from terrain. L2: Destruction of/ physical damage to aircraft structure

H1: Aircraft violates minimum separation from other traffic.

H2: Aircraft violates minimum separation from terrain. L3: Monetary loss due to airspace infringement

H1: Aircraft violates minimum separation from other traffic.

H2: Aircraft violates minimum separation from terrain.

STPA STEP 2: CONTROL STRUCTURE

STPA STEP 3: IDENTIFY UNSAFE CONTROL ACTIONS (UCAS)

Contr oller	Control Actions	Not Providing Causes Hazard	Providing Causes Hazard	Too early, Too late, Out of order	Stopped too soon, Applied too long
ATC	Provide QNH	ATC does not provide updated QNH when FC is using outdated QNH	ATC provides incorrect QNH that does not match environmental conditions	ATC provides QNH too late after crew executes maneuvers based on wrong QNH	ATC continues providing incorrect QNH too long after conditions have changed
FC	Set QNH	FC does not Set QNH when aircraft is using outdated QNH	FC provides incorrect QNH setting that does not match environmental conditions	FC provides QNH setting too late after conditions have changed	FC continues using incorrect QNH too long after environmental conditions do not match QNH
ATC	Issue Control Instructions	ATC does not Issue Control Instructions when the aircraft is in controlled airspace	ATC Issue Control Instructions for aircraft not in the current sector ATC Issue Control Instructions in a way to creates a conflict with another aircraft	ATC Issue Control Instructions too late after a conflict arises	ATC continues Issue Control Instructions too long after ATC stops Issue Control Instructions too soon before
FC	Course Change	FC do not provide Course Change from conflicted flight path in current sector. [H1, H2].	FC provide Course Change to conflicted flight path in current sector. [H1, H2].	FC provide Course Change too late to after conflict with other traffic is irrecoverable. [H1, H2].	FC stops Course Change too soon leaving the aircraft on a conflicting flight path. [H1, H2].

STPA STEP 3: IDENTIFY UNSAFE CONTROL ACTIONS (UCAS)

Contr oller	Control Actions	Not Providing Causes Hazard	Providing Causes Hazard	Too early, Too late, Out of order	Stopped too soon, Applied too long
ATC	Provide QNH	ATC does not provide updated QNH when FC is using outdated QNH	ATC provides incorrect QNH that does not match environmental conditions	ATC provides QNH too late after crew executes maneuvers based on wrong QNH	ATC continues providing incorrect QNH too long after conditions have changed
FC	Set QNH	FC does not Set QNH when aircraft is using outdated QNH	FC provides incorrect QNH setting that does not match environmental conditions	FC provides QNH setting too late after conditions have changed	FC continues using incorrect QNH too long after environmental conditions do not match QNH
ATC	Issue Control Instructions	ATC does not Issue Control Instructions when the aircraft is in controlled airspace	ATC Issue Control Instructions for aircraft not in the current sector ATC Issue Control Instructions in a way to creates a conflict with another aircraft	ATC Issue Control Instructions too late after a conflict arises	ATC continues Issue Control Instructions too long after ATC stops Issue Control Instructions too soon before
FC	Course Change	FC do not provide Course Change from conflicted flight path in current sector. [H1, H2].	FC provide Course Change to conflicted flight path in current sector. [H1, H2].	FC provide Course Change too late to after conflict with other traffic is irrecoverable. [H1, H2].	FC stops Course Change too soon leaving the aircraft on a conflicting flight path. [H1, H2].

STPA STEP 3: IDENTIFY UNSAFE CONTROL ACTIONS (UCAS)

Contr oller	Control Actions	Not Providing Causes Hazard	Providing Causes Hazard	Too early, Too late, Out of order	Stopped too soon, Applied too long	
ATC	Provide QNH	ATC does not provide updated QNH when FC is using outdated QNH	ATC provides incorrect QNH that does not match environmental conditions	ATC provides QNH too late after crew executes maneuvers based on wrong QNH	ATC continues providing incorrect QNH too long after conditions have changed	
FC	Set QNH	FC does not Set QNH when aircraft is using outdated QNH	FC provides incorrect QNH setting that does not match environmental conditions	FC provides QNH setting too late after conditions have changed	FC continues using incorrect QNH too long after environmental conditions do not match QNH	
ATC	Issue Control Instructions	ATC does not Issue Control Instructions when a conflict arises	ATC Issue Control Instructions in a way to creates a conflict with another aircraft	ATC Issue Control Instructions too late after a conflict arises	ATC continues Issue Control Instructions too long after ATC stops Issue Control	
		ATC does not Issue Control Instructions when the aircraft is in controlled airspace	ATC Issue Control Instructions for aircraft not in the current sector		Instructions too soon before	
FC	Course Change	FC do not provide Course Change from conflicted flight path in current sector. [H1, H2].	FC provide Course Change to conflicted flight path in current sector. [H1, H2].	FC provide Course Change too late to after conflict with other traffic is irrecoverable. [H1, H2].	FC stops Course Change too soon leaving the aircraft on a conflicting flight path. [H1, H2].	

CHALLENGING ASSUMPTIONS

SO WHAT?

Remember our FHA hazard classifications?

Failure Condition	Flight Phase	Env	Failure Effects	Class	Assumptions
Loss of transponder data to ATC			Loss of aircraft transponder data on ATC screen. Slight reduction in safety margins and increase in flight crew workload to maintain safe separation.	MIN	ATC and flight crew will recognize a loss of transponder data and revert to an existing procedure/primary radar.
Malfunction of	All phases	IFR	Incorrect aircraft transponder data displayed on ATC screen.		ATC and flight crew conduct regular cross-check of assigned flightpaths/levels which will identify incorrect transponder data to the flight crew/ATC.
transponder data to ATC			Misleading position data presented to controller. Significant reduction in safety margins and increase in flight crew workload to maintain safe separation.	MAJ	This failure may significantly mislead the controller/flight crew or may take some time to be recognized (delayed awareness of failure).

- Would we consider driving up the severity with the loss / malfunction failure conditions? What would realistically be achieved?
- Could we introduce new functionality to provide better feedback?
- What would this new functionality be?
- Where in the traditional approach would we do this?

STPA RECOMMENDATIONS GENERATED

STPA RECOMMENDATIONS GENERATED

Aircraft-Aircraft Coordination:

STPA RECOMMENDATIONS GENERATED

CAN STPA RESULTS HELP SUPPORT CERTIFICATION?

MEANS OF COMPLIANCE GUIDANCE (AC 25.1309-1B)

U.S. Department of Transportation Federal Aviation Administration

Advisory Circular

Subject: S"...quantitative assessments of the probabilities of crew or
maintenance errors are not currently considered
feasible. If the failure indications are considered to be
recognizable and the required actions do not cause an
excessive workload, then for the purposes of the analysis,
such corrective actions can be considered to be
satisfactorily accomplished." (5-5)

"...Reasonable tasks are those that can be **realistically anticipated** to be **performed correctly** when they are required or scheduled." (8-1)

Questions STPA helps us consider:

- Recognizable to whom and with what training? Test pilot or line pilot?
- Excessive workload under what system conditions?
- How do we determine which tasks are reasonable? Are there situations in which tasks are not reasonable? (conflicting feedback, mental model flaws, etc)
- Realistic under which circumstances?
- What if tasks are not performed correctly?

MEANS OF COMPLIANCE GUIDANCE (AC 25.1309-1B)

W.S. Department of Transportation Federal Aviation Administration

Subject: System Design and Analysis

Date: D R A F T AC No: 25.1309-1B

This advice the failure of 25.1309(b) if relevant experience indicates the failure condition can occur." (A-2)

Are these failure conditions or a loss of functionality?

- Subsystem intentionally deactivated for maintenance (MMEL)
- Transponder configured incorrectly
- ATC provides incorrect QNH
- Flight crew enters incorrect QNH
- Poor visibility inhibits crew's ability to visually confirm runway
- ILS down for maintenance
- ATC has no feedback to indicate QNH is incorrect

IN CONCLUSION

System Design and Analysis for Safety **AC 25.1309** Flightcrew Human Factors Assessment **AC 25.1302**

IN CONCLUSION

System Design and Analysis for Safety **AC 25.1309**

a a a # 1+ 11 .

Total Systems Approach with STPA

Flightcrew Human Factors Assessment **AC 25.1302**

QUESTIONS?

NOTE: The aviation system is very complex with many operational details and subtleties we didn't have time to address today.