

A SYSTEMS ANALYSIS OF THE 1998 SYDNEY WATER CRISIS

Hew Merrett, Prof. Jao-Jia Horng, and Prof. Wei-Tong Chen

National Yunlin University Science and Technology, Taiwan

PRESENTATION OVERVIEW

- Background
- Scheme Description
- Accident Description
- Results
- Findings
- Conclusion

Source: NSW Water

BACKGROUND

- High levels of Cryptosporidium and Giardia
 Detected in the drinking water supply for Sydney
 Australia
- Three separate Boiled Water Advisories were issued
- Considered a false positive event absence of increased disease levels in community
- Resulted in significant restructure of drinking water supply organizations
- Outcomes and learnings from this incident have influenced the practices of water utilities across Australia

SCHEME DESCRIPTION

Warragamba Catchment Upper Nepean Catchments

Water storage reservoirs

Prospect Water Treatment Plant

Drinking Water Distribution

- The water supply scheme for Sydney supplies around 4 million people
- The water supply scheme for Sydney is a complex mix of sources and treatment plants
- Prospect Water Treatment Plant supplies 85% of Sydney's drinking water and the district that was affected by the crisis
- Prospect Water Treatment Plant is supplied by the Warragamba and Upper Nepean catchment areas

KEY EVENTS

- The drinking water distribution system sampling on the 7/21/1998 and 7/22/1998 showed low level detections of Cryptosporidium and Giardia
- Detections resulted in further investigation and notification to the NSW Department of Health.
- Then from 7/22/1998 onwards continued detections of Cryptosporidium and Giardia resulted in three Boiled Water Advisories (BWA) issued over 3 months
- Cryptosporidium and Giardia detected in raw water, filtration plant and distribution system water samples.
- Formal Inquiry held to determine the causes of the crisis and determine accountability

ACCIDENT, HAZARD AND SAFETY SYSTEM CONSTRAINTS

Accident:

Loss of confidence in the safety of drinking water supplied to the public

General System hazard:

Public exposed to unsafe drinking water

Safety System Constraints:

The public must not be exposed to pathogens in drinking water

Public health measures must reduce risk of public exposure to unsafe water during incidents

INCIDENT TIMELINE

PRE-CRISIS CONTROL STRUCTURE FULL SYSTEM

The control structure in place at the time of the crisis

CONTROL STRUCTURE AT TIME OF CRISIS – REGULATORY

Main Regulators of drinking water

- NSW government operating License
- NSW Department of Health – MoU for supply of drinking water

PRE-CRISIS CONTROL STRUCTURE – OPERATIONAL

- The key operational components of the control structure at the time of the crisis
- Single agency managing drinking water quality from catchment to tap
- Multiple statutory
 agencies managing
 catchment land use

SUMMARY OF ACCIDENT CAUSAL FACTORS - DRINKING WATER CATCHMENTS

SAFETY REQUIREMENTS AND CONSTRAINTS VIOLATED

- Monitor point source and non-point source pollution.
- Implement best practice management of land uses within the catchment

CONTEXT IN WHICH DECISIONS WERE MADE

- SWC source protection staffing numbers reduced and some functions outsourced
- Extended drought and grazing had reduced the effectiveness of vegetated stream buffers
- Catchment area is largely undeveloped with some long term private land tenure

FAILURES AND INADEQUATE CONTROLS

- The catchment condition had been allowed to slowly degrade over time
- Multiple agencies involved in land use policy and regulations without central coordination.

PROCESS MODEL FLAWS

- A number of regulated land uses in the catchment were known to be noncompliant
- Loss of organizational knowledge from Sydney Water Corporation
- Multiple government agencies with no centralized planning or administration focused on drinking water quality outcomes

SUMMARY OF ACCIDENT CAUSAL FACTORS - WARRAGAMBA RESERVOIR

SYSTEM REQUIREMENTS AND CONSTRAINTS VIOLATED

- Detention and settling time sufficient for sedimentation and microbial die off
- Offtake levels set to abstract highest quality
 water from reservoir body

CONTEXT IN WHICH DECISIONS WERE MADE

- Reservoir is normally mixed at that time of year with equal water quality at all depths
- The heavy rain resulted dam levels raising from 58% to 100% in 2 weeks.
- A high-resolution thermistor chain was installed in reservoir and was actively recording data

FAILURES AND INADEQUATE CONTROLS

Offtake levels were not raised in time to avoid abstracting the recent runoff water causing abstraction of high turbidity water with high potentially high pathogen concentrations

PROCESS MODEL FLAWS

 Reservoir operators were unaware of the degraded catchment condition and poor quality of runoff water.

SUMMARY OF ACCIDENT CAUSAL FACTORS - WATER TREATMENT

SYSTEM REQUIREMENTS AND CONSTRAINTS VIOLATED

- Treatment barrier will meet the water quality challenge of the raw water quality
- The treatment system can handle raw water pathogen levels when operating within design limits

CONTEXT IN WHICH DECISIONS WERE MADE

- Plant was operating as expected and seasonal demand was low as expected for winter
- The plant was challenged by higher than usual levels of turbidity in the raw water.
- reduced effectiveness of coagulant mixing due to plant maintenance (first BWA).

FAILURES AND INADEQUATE CONTROLS

- Sampling showed cysts and oocysts moving through the treatment system.
- Abnormal water quality to the plant challenged the effectiveness of filtration and pathogen removal

PROCESS MODEL FLAWS

- Operational turbidity limits in place were considered an effective surrogate to indicate effective pathogen removal.
- During the scheduled maintenance activities deviations from normal operations could allow passage of pathogens through the treatment plant

SUMMARY OF ACCIDENT CAUSAL FACTORS - SAMPLE ANALYSIS

SYSTEM REQUIREMENTS AND CONSTRAINTS VIOLATED

Provide accurate count of pathogens in water samples within a specified time

CONTEXT IN WHICH DECISIONS WERE MADE

- The analysis methods in place were regularly used for operational sampling by SWC
- Staff had been trained and a QC system in place
- Some of the pathogen concentrations were at levels normally seen in wastewater
- Massive increase in samples to be processed during crisis requiring additional staff and resources

FAILURES AND INADEQUATE CONTROLS

- The analytical methods used can potentially include counts of dead and decaying cysts and oocysts
- The analytical methods were not suitable for telling if the cysts and oocysts were active or pathogenic in the time required

PROCESS MODEL FLAWS

- believed the analysis results were quantitatively representative of water quality
- Believed the analysis results represented gross contamination of pathogenic Cryptosporidium and Giardia

SUMMARY OF ACCIDENT CAUSAL FACTORS — NSW DEPARTMENT OF HEALTH

SAFETY REQUIREMENTS

- Set requirements for verification and validation of drinking water safety
- Provide advice on public health protection during drinking water contamination incidents

CONTEXT IN WHICH DECISIONS WERE MADE

- Previous studies show a risk of
 Cryptosporidium and Giardia in the catchment
- Some reputable literature recommends operational pathogen monitoring to measure barrier performance

FAILURES AND INADEQUATE CONTROLS

 Set a requirement for operational monitoring for Cryptosporidium and Giardia without appropriate guidelines/limits or complete response protocol

MENTAL MODEL FLAWS

- unaware of the complexities and limitations of operational Cryptosporidium and Giardia monitoring
- inadequate knowledge of staff on how to deal with large-scale water quality incidents

SUMMARY OF ACCIDENT CAUSAL FACTORS — SWC WATER QUALITY OPERATIONS

SAFETY REQUIREMENTS

- Implement a water quality management system based on the 1996 ADWG.
- Monitor Water quality across the system to ensure it meets the regulatory requirements.

CONTEXT IN WHICH DECISIONS WERE MADE

- Previous studies have highlighted the risk of pathogens in the catchment
- New treatment plant in place should meet the challenges from the raw water
- No previous detections of high levels of Cryptosporidium and Giardia in the distribution system
- Long term degradation in catchment and rapid filling of the reservoir
- 1996 ADWG did not require operational monitoring or set limits for Cryptosporidium and Giardia due to complexities with analysis methods

FAILURES AND INADEQUATE CONTROLS

- Response actions were primarily based on
 Cryptosporidium and Giardia sampling results
- No mention of sampling or investigation using of other contamination indicators such as thermotolerant coliforms (e.g. Escherichia. coli) or chlorine demand

MENTAL MODEL FLAWS

- Was unaware of the state of the catchment which had seriously degraded
- Didn't initially consider the rapid filling of the reservoir and associated water quality impacts
- Assumed all results equated Cryptosporidium and Giardia when the analysis method was prone to false positives

Review of disease Report surveillance data Laws and budget Laws and budget NSW State government NSW Department of Health Sydney Residents MoU operating Audit Communication licence compliance/performance of information feedback Sydney Water oversight Corporation Board Sydney Water Corporation Australia drinking water NHRMC guidelines Provision of Advisories Stakeholder Sample Operational ___result_____ reporting and feedback Australian Water Lab Australian Water Operational Services control Reservoir Water Operational Monitoring SWC Sampling monitoring scheme operations Operational -> Catchment control Prospect WTP Monitoring Public Heatlh Warragamba and Upper Storage Reservoirs Distribution Nepean Catchments Water supply network polluting and verification activities Multiple catchment land use regulatory agencies Reporting

FLAWS IN CONTROL STRUCTURE

POST CRISIS – FORMAL INQUIRY RECOMMENDATIONS

- Formation of new agency for source water management
- Additional verification and validation of source protection controls
- Improved incident response protocols

CAST - KEY FINDINGS

- There were no sudden failures of the barriers in operation
- Decline in catchment health and protection resulting in reduced resilience to large rainfall events.
- Water Treatment Plant was challenged by the sudden change in water quality
- Delayed response actions to avoid abstracting contaminated reservoir water
- Concerns raised regarding the accuracy of results from operational sampling for Cryptosporidium and Giardia
- Focus on sampling results, not on the overall measures of system performance
- Incident management plans were not adequate for such a large scale event

STPA – HAZARD ANALYSIS OF DRINKING WATER SYSTEMS

- Drinking water incidents still continue to occur in developed countries
- Drinking water systems are becoming more complex with greater automation
- Using STPA as a tool to develop control systems for operational management of drinking water systems
- Main loss considered is Public illness from drinking water contamination
- Layered hazards based on barriers in the supply network

CONCLUSIONS

- Considered a false positive event Cryptosporidium and Giardia sampling showed a public health risk, however no increase in illness was identified
- Drinking water systems are prone to conflicting information on barrier performance
- Water sampling alone is not the best indicator of drinking water supply performance
- Effective risk management requires a catchment to tap systems approach
- Further work on drinking water systems risk management based on systems theory (STPA)
 and indicators of system performance

THANK YOU

Questions?

