Application of CAST to Producibility Loss in Aerospace Manufacturing

John Barstow MIT Leaders for Global Operations & System Safety Lab

Application of CAST to Producibility Loss in Aerospace Manufacturing

01 Background

- Industry Context
- Motivation
- Project Overview

02 CAST Process

- Step 1: Assemble basic information
- Step 2: Model safety control structure
- Step 3: Analyze each component in loss
- Step 4: Identify control structure flaws
- Step 5: Create improvement program

03 Results

Key takeaways

Industry Context: Defense Aerospace

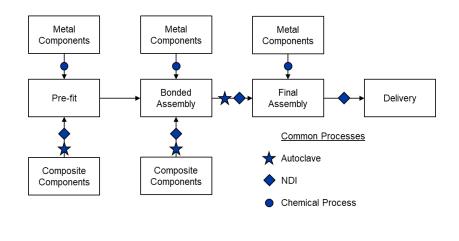
- State-of-the-art materials and techniques
- Aircraft lifecycles measured in decades
- Low production volume
- Challenging aftermarket support requirement (spare parts)
 - Long-term revenue stream
 - Reputational risk to OEM

Motivation: Work Movement and Producibility

Industry factors drive need for work
movement capability

but...

- Implications of moving complex assemblies after a period of outsourcing are not well understood
- Existing procedures are of limited application:
 - Developed primarily for outsourcing and internal movement
 - Emphasis on technical documentation and equipment


 Many work movement efforts have been unexpectedly costly and slow

> Can system-theoretic analysis tools improve decision making during work movements?

Project Overview

- Research project hosted by a large aerospace manufacturer
- Production system for spare composite flight control surfaces for out-of-production aircraft, troubled by defects and delays
- Timeline
 - 1970's: Original design
 - 2000's: End of aircraft production, spare part production outsourced
 - 2020's: Supplier ceases operation, OEM decides to re-establish flight control surface spares production at internal facility

What can CAST reveal about the production problems encountered in this situation?

Application of CAST to Producibility Loss in Aerospace Manufacturing

01 Background

- Motivation
- Industry Context
- Project Overview

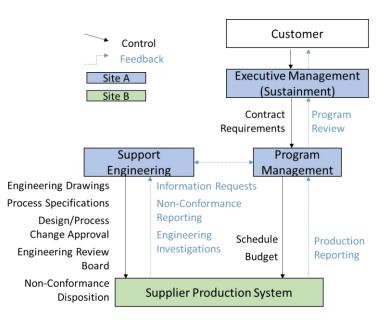
02 CAST Process

- Step 1: Assemble basic information
- Step 2: Model safety control structure
- Step 3: Analyze each component in loss
- Step 4: Identify control structure flaws
- Step 5: Create improvement program

03 Results

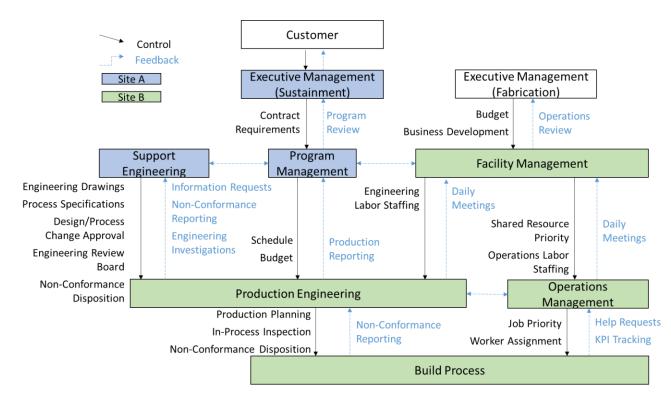
Key takeaways

CAST Process Step 1: Assemble basic information


- Project took place over 6 months of on-site work at a manufacturing facility
- Data sources included:
- 20+ hours of interviews with engineers, mechanics, managers, and executives
- Hundreds of documents including engineering data, production plans, and correspondence
- Approximately 115 days of direct observation

This much study may not be necessary if you're already familiar with the product, process, and organization!

CAST Process Step 2: Model safety control structure

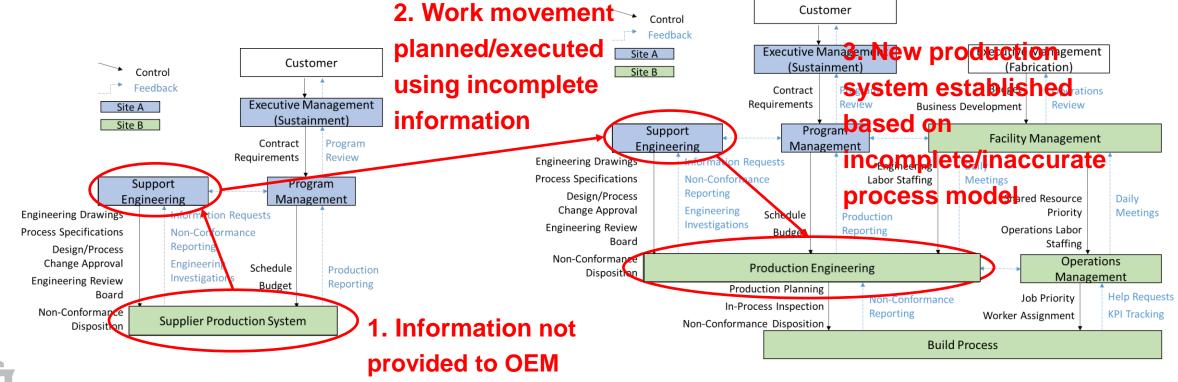

- Control structure was designed to manage the supplier process (pre-movement)
- Simple and effective, but with limited visibility into the supplier production system

CAST Process Step 2: Model safety control structure

- The same management structure was adapted to control internal production after movement
- Control structure results in distributed authority over aspects of build process
- Communication and coordination are complicated by the location of some management functions away from build process

CAST Process Step 3: Analyze each component in loss

- From interviews and documents, a detailed timeline of production history (postmovement) was developed
- Producibility loss elements were grouped into three categories
- Manufacturing Plans
- Tooling
- Materials


Example producibility constraints

- "The product and its components and subassemblies must be fabricated and assembled per the manufacturing plan"
- "Any operation or combination of operations in the manufacturing plan that are impossible, dangerous, or unduly difficult must be changed or re-ordered"
- "Changes to the manufacturing plan must be acknowledged by operations and approved by production engineering"

CAST Process Step 4: Identify control structure flaws

"Changes to the manufacturing plan must be acknowledged by operations and approved by production engineering"

CAST Process Step 5: Create improvement program

- Production process was discontinued in early 2023, with no successful deliveries
- Recommendations focused on improving decision making in future, similar work movement efforts
- Results applicable to complex manufacturing efforts within large, distributed organizations

Application of CAST to Producibility Loss in Aerospace Manufacturing

01 Background

- Motivation
- Industry context
- Project overview

02 CAST Process

- Step 1: Assemble basic information
- Step 2: Model safety control structure
- Step 3: Analyze each component in loss
- Step 4: Identify control structure flaws
- Step 5: Create improvement program

03 Results

Key takeaways

Results Key Takeaways

Research Conclusions

- Integrating production efforts across business segments and geographic locations requires deliberate organization design
- Fundamental tension exists between configuration control and continuous improvement

CAST Lessons

- Importance of subject matter expertise
- Applying CAST to organizations is effective but requires specific considerations:
 - Stakeholder buy-in required for useful results
- CAST successfully identified systemic causes of producibility issues that were beyond the reach of traditional "root cause" engineering investigations

Questions? jbarstow@mit.edu

THANK YOU