Using Systems Theory for Additional Risk Detection in Boiler Explosions in Brazil

Renan Guimarães Landi
Labor Inspection, Brazilian Ministry of Labor
Production Engineering Department, Polytechnic School, University of São Paulo (USP)

Uiara Bandineli Montedo
Production Engineering Department, Polytechnic School, University of São Paulo (USP)

Carlos Henrique Lahoz
Graduate Program In Science And Space Technologies (PG-CTE), Aeronautics Institute of Technology (ITA)
• Labor Inspector at the Brazilian Ministry of Labor, since 2014

• Master's student at University of São Paulo, Brazil, since 2020

• The presentation reflects the authors views, not the official position of the Brazilian Government.
• Boiler accident aboard the **Norbe VIII drillship** – 2017
• Three workers died, and one was injured
• Several official investigations
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 June 2016</td>
<td>-</td>
<td>Last periodic safety inspection of boiler #1</td>
</tr>
<tr>
<td>6 June 2017</td>
<td>-</td>
<td>The calibration certificate for pressure gauges and safety valves (PSV) and the safety inspection of boilers expires</td>
</tr>
<tr>
<td>7 June 2017</td>
<td>Afternoon</td>
<td>Technicians from IMI embark on the Norbe VIII and require the Chief Engineer (day shift) to place the boilers in normal operating conditions</td>
</tr>
<tr>
<td>7 June 2017</td>
<td>Afternoon</td>
<td>The Chief Engineer requests the night shift team to heat and start the boilers to carry out the inspection service</td>
</tr>
<tr>
<td>7 June 2017</td>
<td>20hs</td>
<td>Heating of the boilers</td>
</tr>
<tr>
<td>8 June 2017</td>
<td>2:00 - 3:00 am</td>
<td>The boilers are started by the Second Engineer (night shift), who identifies that the PSV of both boilers were relieving at pressures below the set pressure.</td>
</tr>
<tr>
<td>8 June 2017</td>
<td>Daybreak</td>
<td>The Chief Officer (night shift) starts the boilers and confirms the relief of the PSV below the pressure set. Turn off both boilers and return to the Machine Control Room (ECR).</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>8 June 2017</td>
<td>Before</td>
<td>The Chief Officer (night shift) informs the Chief Engineer (day shift) about the PSV problem. Then both go to the boiler room and restart</td>
</tr>
<tr>
<td></td>
<td>the shift</td>
<td>the boilers to confirm the problem. Boilers #1 and #2 PSV were relieved at higher pressures than in the previous test, but still below</td>
</tr>
<tr>
<td></td>
<td>change</td>
<td>the set pressure.</td>
</tr>
<tr>
<td>8 June 2017</td>
<td>5:30 am</td>
<td>The IMI team was informed that the boilers were not ready for inspection due to the problem found with the PSV.</td>
</tr>
<tr>
<td>8 June 2017</td>
<td>Morning</td>
<td>The second Engineer (day shift) and the IMI team enter the boiler room. The boilers were started and the premature actuation of the PSV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of boiler #1 was observed.</td>
</tr>
<tr>
<td>8 June 2017</td>
<td>5:30 pm</td>
<td>At the shift change meeting, the night team is instructed not to perform boiler service during the shift, as IMI would perform boiler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>service on the morning of the following day. The Second Engineer (night shift) advises that the PSV would have to be removed and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manually tested. The Second Engineer (day shift) informs the Chief Engineer that the following day the boilers would be ready for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSV removal.</td>
</tr>
<tr>
<td>9 June 2017</td>
<td>7:00 am</td>
<td>The boiler heating process starts. The Second Machine Officer and the IMI team are in the boiler room.</td>
</tr>
<tr>
<td>9 June 2017</td>
<td>7:38 am</td>
<td>Boiler #1 explodes during the heating process.</td>
</tr>
</tbody>
</table>
BOILER’S BACKUP PROTECTION SYSTEM

Between 6.5 and 7.5 Bar
- Working pressure
- Burner controlled by the programmable logic controller (PLC)

≥ 8.5 Bar
- PLC performs interlock (trip) of the boiler

≥ 9.2 Bar
- Pressure Safety Valve (PSV) relieves pressure (MAWP)
OPERATOR’S MENTAL MODEL

AS IS

< 4.0 Bar
 - PSV relieves pressure

Between 6.5 and 7.5 Bar
 - Working pressure
 - Burner controlled by the logic controller (PLC)

≥ 8.5 Bar
 - PLC performs interlock (trip) of the boiler

TO BE

Between 6.5 and 7.5 Bar
 - Working pressure
 - Burner controlled by the logic controller (PLC)

≥ 8.5 Bar
 - PLC performs interlock (trip) of the boiler

≥ 9.2 Bar
 - PSV relieves pressure (MAWP)
OPERATOR’S MENTAL MODEL

AS IS

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4.0 Bar</td>
<td>PSV relieves pressure</td>
</tr>
</tbody>
</table>
| Between 6.5 and 7.5 Bar | Working pressure
Burner controlled by the logic controller (PLC) |
| ≥ 8.5 Bar | PLC performs interlock (trip) of the boiler |
OPERATOR’S MENTAL MODEL

AS IS

- **< 4.0 Bar**
 - PSV relieves pressure

- **Between 6.5 and 7.5 Bar**
 - Working pressure
 - Burner controlled by the logic controller (PLC)

- **≥ 8.5 Bar**
 - PLC performs interlock (trip) of the boiler

TO BE

- **Between 6.5 and 7.5 Bar**
 - Working pressure
 - Burner controlled by the logic controller (PLC)

- **≥ 8.5 Bar**
 - PLC performs interlock (trip) of the boiler

- **≥ 9.2 Bar**
 - PSV relieves pressure (MAWP)
Manual valves in the pressure taps of safety devices were closed!

All the safety devices controlled by the PLC disabled!
- Anti-tamper seals removed
- Not documented
- Springs fully compressed
OPERATOR’S MENTAL MODEL

< 4.0 Bar
PSV relieves pressure

Between 6.5 and 7.5 Bar
Working pressure
Burner controlled by the logic controller (PLC)

≥ 8.5 Bar
PLC performs interlock (trip) of the boiler

WHAT WAS REALLY HAPPENING

Between 6.5 and 7.5 Bar
Working pressure
Burner controlled by the programmable logic controller (PLC)

≥ 8.5 Bar
PLC performs interlock (trip) of the boiler

≥ 9.2 39 Bar!
Pressure Safety Valve (PSV) relieves pressure (MAWP)
<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Provide a qualified professional to oversee the operation and maintenance of the boilers.</td>
</tr>
<tr>
<td>2</td>
<td>Improve contractor due diligence, including technical expertise, regulations, and scope of services.</td>
</tr>
<tr>
<td>3</td>
<td>Establish audit procedure for contractors.</td>
</tr>
<tr>
<td>4</td>
<td>Establish procedures for boiler inspection in accordance with the manufacturer’s instructions.</td>
</tr>
<tr>
<td>5</td>
<td>Implement the use of a checklist for the startup and operation of boilers.</td>
</tr>
<tr>
<td>6</td>
<td>Include a specific health and safety culture program in the leadership training matrix.</td>
</tr>
<tr>
<td>7</td>
<td>Implement a procedure to perform hazard analysis and control when performing non-routine tasks.</td>
</tr>
<tr>
<td>8</td>
<td>Implement a procedure to issue a hazard analysis and control when performing non-routine tasks.</td>
</tr>
<tr>
<td>9</td>
<td>Establish a shift change procedure (changelog, lockout & tagout, ongoing interventions etc.).</td>
</tr>
<tr>
<td>10</td>
<td>Review the boiler start procedure considering the prior verification of valves, instruments, and pressure taps of the control system, through a checklist.</td>
</tr>
<tr>
<td>11</td>
<td>Create a procedure for disabling boiler control and protection systems.</td>
</tr>
<tr>
<td>12</td>
<td>Implement training in change management and related procedures.</td>
</tr>
<tr>
<td>13</td>
<td>Implement a training program to value the safety culture and behavioral attitude of the workforce.</td>
</tr>
<tr>
<td>14</td>
<td>Establish a documented form of communication between leadership and its team.</td>
</tr>
<tr>
<td>15</td>
<td>Establish a safe work system to keep only qualified professionals directly involved in the activity in the place of execution of operations.</td>
</tr>
<tr>
<td>16</td>
<td>Issue notification to the manufacturer about the failure identified in the Boiler Manual: Lack of a step-by-step procedure to perform the gradual heating of the boiler adequately.</td>
</tr>
</tbody>
</table>
Procedures / Training:

- symbolic and incorporeal barriers
- low efficiency
- not sufficient for safety-critical tasks
- difficult to evaluate their effectiveness
 - highly dependent on humans during operations

(Hollnagel, 2008)
Rather than striving to control behavior by fighting procedure deviations, to improve safety, the focus should be on control of the behavior by making the boundaries of safe operations explicit and known to actors.

(Rasmussen, 1997)
Boiler operator, contractors

Monitoring, action

System pressure

Safety devices condition

Boiler Panel/Control Center

Monitoring

System pressure

Increase or decrease flame

System pressure

Burner

No component failure: None of the physical components failed

Unsafe Interactions
- Closing of manual valves (pressure taps)
- Pressure set of PSV above MAWP
- Official report recommendations
- CAST new recommendations
CONCLUSION

• New 6 design recommendations (Boiler Manufacturer)
• New 5 recommendations to Government (National Congress, Ministry of Labor, and Labor Inspection)
• 2 other recommendations to Norbe VIII company and Petrobras
CONCLUSION

• The role or contribution of official agencies (National Petroleum Agency, Ministry of Labor, Brazilian Navy etc.) to the hazardous state were not addressed in their reports.
• Need to reduce the subjectivity in selecting the chaining conditions.
CONCLUSION

• Defense-in-depth is definitely a good approach. But not enough.
• More important than numbers, the CAST analysis identified systemic causal factors that allow the prevention not only of similar events in the future, but a broader type of accidents that stems from unsafe control actions at higher levels of the safety control structure.
Using systems theory for additional risk detection in boiler explosions in Brazil

Renan Guimarães Landi a, b, *, Uliara Bandineli Montedo c, Carlos Henrique Netto Lahoz c

a Production Engineering Department, Polytechnic School, University of São Paulo (USP), Av. Prof. Luciano Guadãrno, 1380, São Paulo 05508-016, Brazil.
b Labour Inspection, Ministry of Labour, Av. Marshal Camelão, 686, Campinas 13041-311, Brazil.
c Graduate Program in Science And Space Technologies (PG-CTE), Aeronautics Institute of Technology (ITA), Praça Marquês de Pombal, 50, São José dos Campos 12228-900, Brazil.

ARTICLE INFO

Keywords
- Accident analysis
- Boiler
- STAMP
- CAST
- Systems theory
- Labour inspection

ABSTRACT

Recent technological advances have allowed some human activities, including those related to safety, to be automated. However, these advances increased the complexity of sociotechnical systems, representing exponential growth of interactions between humans, computers, machines, and the environment. Moreover, growing productive and economic pressures demand safer and more reliable products and projects, at lower costs and time than those practiced by competitors. To cope with this complexity and set of conflicting objectives, the STAMP (System-Theoretic Accident Model and Processes) emerged as a novel approach to analyse processes and accidents. In this study, an overview of boiler accidents in Brazil is presented and a causal analysis based on STAMP (CAST) is conducted to revisit one of the worst boiler accidents in the Brazilian scenario. Even without direct participation in the investigations, additional and more relevant risk factors are evidenced. Furthermore, it was found that government agencies generally refrain from reviewing their own control actions contributing to the hazard, limiting their potential improvements. This suggests a need for companies and government agencies to adopt new paradigms of risk and accident analysis and to work together for a systemic safety improvement approach.
References:

