STPA for Autonomous Vehicles Functions

Anas Shahzad
Mona Noori
Ali Nouri
6/8/2022

The animations are for illustrative purpose only.
The materials presented is the results of scientific work. All findings, results, and conclusions in this presentation are those of authors and do not necessarily reflect the views of Volvo Cars.
Towards Safe **Un-Supervised** Autonomous Driving

Functional Safety (ISO 26262)
- Systematic SW failure
- Systematic HW failure
- Random HW failure

Safety of the Intended Functionality (ISO 21448)
- Performance limitations
- Insufficiencies of specification
- etc.

Product Cybersecurity
(e.g., ISO 21434)
Automotive abstraction levels & traditional safety analysis methods

- Item Design
- Function Design
- System Design
- Components Design

Design: HARA (Hazard Analysis & Risk Assessment)

Implementation: FMEA, FMEDA

Testing: Vehicle Validation, Vehicle Verification
- Systems Integration
- System Verification
- Components Integration

Components Implementation

6/8/2022
STPA method on AD functions, Anas Shahzad, Mona Noori, Ali Nouri
Functional Architecture

- Driver
- HMI
- Decision & Control
- Actuators
- Sensing
- Controlled Process
Step 1: Define the purpose & scope of the analysis

Losses
- L-1: Injury or loss of life
- L-2: Damage to the vehicle
- L-3: Loss of mission
- L-4: Loss of customer satisfaction
- L-5: Loss of finances

Hazards
- H-1: AV does not maintain a safe distance from vulnerable road users (VRUs) or other stationary or moving objects in the surroundings [L-1, L-2, L-4, L-5]
- H-2: AV leaves designated path [L-3, L-4]
- H-3: AV violates allowed operating conditions [L-4]
- H-5: AV behavior is uncomfortable for the passengers [L-3, L-4]
- H-6: AV loses control [L-1, L-2, L-3, L-4, L-5]
Step 1: Define the purpose & scope of the analysis

System level constraints

- **SC-1**: AV must maintain a safe distance from VRUs and other stationary and moving objects in the surroundings [H-1]
- **SC-2**: AV must adhere to the designated path [H-2]
- **SC-3**: AV must adhere to the allowed operating limits advised by the traffic rules and ODD limitations [H-3]
- **SC-5**: AV must provide a comfortable experience to the passengers when driving or stationary [H-5]
- **SC-6**: AV must never lose control [H-6]
Step 2: Modelling the control Structure

State responsibility of each sub-system to identify and refine control actions and feedback required by the system

<table>
<thead>
<tr>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision controller</td>
</tr>
<tr>
<td>R-1: Issues acceleration command to speed up the AV</td>
</tr>
<tr>
<td>R-2: Issues braking command to slow down the AV</td>
</tr>
<tr>
<td>R-3: Issue steering commands to maneuver the AV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Responsibility</th>
<th>Control Action</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Controller</td>
<td>R-1</td>
<td>Acceleration</td>
<td>Vehicle data and present world model</td>
</tr>
<tr>
<td></td>
<td>R-2</td>
<td>Braking</td>
<td>Vehicle data and present world model</td>
</tr>
<tr>
<td></td>
<td>R-3</td>
<td>Steering</td>
<td>Vehicle data and present world model</td>
</tr>
</tbody>
</table>
Step 3: Identify unsafe control actions

<table>
<thead>
<tr>
<th>Control Action</th>
<th>Providing causes hazard</th>
<th>Not-providing causes hazard</th>
<th>Started early/late/out of order</th>
<th>Stopped soon/applied longer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>[UCA-5.7] Decision & Control subsystem keeps speeding the AV by providing acceleration command when there is an object in the path while the visibility is low [H-1]</td>
<td>[UCA-5.15] Decision & Control subsystem provides excessive acceleration command which makes the vehicle go beyond allowed speed limits [H-3]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Providing causes hazard

Acceleration
- [UCA-5.7] Decision & Control subsystem keeps speeding the AV by providing acceleration command when there is an object in the path while the visibility is low [H-1]
- [UCA-5.15] Decision & Control subsystem provides excessive acceleration command which makes the vehicle go beyond allowed speed limits [H-3]

Controller Constraints

Acceleration
- [SC-5.7] Decision & Control subsystem must not speed the AV by providing acceleration command when there is an object in the path [UCA-5.7]
- [SC-5.15] Decision & Control subsystem must not provide excessive acceleration command which makes the vehicle go beyond allowed speed limits [UCA-5.15]
Step 4: Identify loss scenarios

<table>
<thead>
<tr>
<th>Loss Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCA-5.7</td>
</tr>
<tr>
<td>[Scenario-1] The AV does not detect vulnerable road users, stationary or moving objects in the passage due to processing delays in the decision & control algorithm and keeps speeding the vehicle by providing acceleration command which can result in a collision [H-1]</td>
</tr>
<tr>
<td>[Scenario-2] Decision & Control subsystem keeps speeding the vehicle by providing acceleration command because it believes the passage is clear due to insufficient information in the environmental perception data received from the sensing subsystem due to lack of adequate sensor to detect objects in low visibility condition which can result in a collision [H-1]</td>
</tr>
<tr>
<td>[Scenario-3] Decision & Control subsystem believes the passage is clear due to incorrect environmental perception data being received from the sensing subsystem and keeps speeding the vehicle by providing acceleration command which can result in a collision [H-1]</td>
</tr>
<tr>
<td>UCA-5.15</td>
</tr>
<tr>
<td>[Scenario-1] Decision & Control algorithm provides excessive acceleration which makes the AV exceed the speed limit because it doesn't follow the localized traffic rules, which can result in the vehicle exceeding allowed operating conditions [H-3]</td>
</tr>
<tr>
<td>[Scenario-2] Decision & Control subsystem provides excessive acceleration which makes the AV exceed the speed limit because the sensing subsystem fails to correctly localize the ego vehicle which can result in the vehicle exceeding safe operating conditions [H-3]</td>
</tr>
<tr>
<td>[Scenario-3] Decision & Control subsystem provides excessive acceleration which makes the AV exceed the speed limit because it believes the vehicle speed is within limits due to incorrect vehicle speed information being received from the sensing subsystem which can result in the vehicle exceeding safe operating conditions [H-3]</td>
</tr>
</tbody>
</table>
Step 4: Identify loss scenarios

<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
</table>
| **UCA-5.7**
 If the Decision & Control subsystem is stuck in processing it should engage a suitable minimum risk maneuver [**Scenario-1**]
 Sensing subsystem must include adequate sensor to be able to detect vulnerable road users, stationary or moving objects in low visibility conditions [**Scenario-2**]
 Sensing subsystem must implement redundant sensors and to be able to verify the environmental perception data being received by the controller [**Scenario-3**] |
| **UCA-5.15**
 Decision & Control algorithm must consider local traffic rules for speed limits before providing acceleration command [**Scenario-1**]
 A suitable minimum risk maneuver must be engaged (by a backup controller) if the vehicle speeds beyond the speed limit and is not slowing down [**Scenario-1**]
 Sensing subsystem must provide reliable information regarding location of the ego vehicle by having redundant methods [**Scenario-3**] |
STPA method on AD functions, Anas Shahzad, Mona Noori, Ali Nouri

Losses
- L-1: Injury or loss of life
- L-2: Damage to the vehicle

Hazards
- H-1: AV does not maintain a safe distance from vulnerable road users (VRUs) or other stationary or moving objects in the surroundings [L-1, L-2, L-4, L-5]

System level constraints
- SC-1: AV must maintain a safe distance from VRUs and other stationary and moving objects in the surroundings [H-1]

Control structure
- Control Algorithm
 - engage/disengage drive mode, route/destination instructions
 - acceleration, braking, steering

UCA
- [UCA-5.7] Decision & Control subsystem keeps speeding the AV by providing acceleration command when there is an object in the path while the visibility is low [H-1]

Loss scenarios
- [Scenario-3] Decision & Control subsystem believes the passage is clear due to incorrect environmental perception data being received from the sensing subsystem and keeps speeding the vehicle by providing acceleration command which can result in a collision [H-1]

Solutions
- Sensing subsystem must implement redundant sensors and to be able to verify the environmental perception data being received by the controller [Scenario-3]
Thank You
VOLVO