A Top-Down, Safety-Driven Approach to Architecture Development for Complex Systems

STAMP Workshop Lightning Talk

Justin Poh
6th June 2022
What is a System Architecture?

System Architecture: An abstract description of the entities of a system and the relationships between those entities [1]

An Emergency Medical Services (EMS) Helicopter [2]
Current Approach to Architecture Development

Stakeholder Needs → Decompose to obtain System Requirements → Decompose to obtain Necessary Functions

Assign to system elements to create System Architecture → Define and Analyze Interactions Between Components

Key Assumption:
System can be divided up into components before considering interactions
Challenges in Using the Current Approach for Architecture Development

1. Future Complex Systems are becoming more complex and interconnected
 • Example: More software and sensors being introduced to modern EMS helicopters to enable them to fly in inclement weather
 • Using decomposition, it becomes more difficult to identify or avoid introducing flaws in the system architecture

2. The desirable system behaviors or properties are increasingly the result of component interactions
 • Example: To achieve safe flight, need to make sure that the pilots and automated flight systems can work together effectively
 • If interactions are only considered later, desirable system behaviors or properties may not be fully realized

Need a new approach to architecture development that overcomes these challenges and considers systems holistically

New approach needs to:

• Consider interactions and undesirable system behavior early in the design process

• Uses that information to design the necessary interactions and system behavior into the system
Overview of Approach

Safety-relevant information can be used to drive architecture development

Information about how undesirable system behavior could occur

used to define

System requirements (constraints) to prevent undesirable behavior

used to define

System behavior and interactions needed to meet the system requirements

informs the creation of

System Architecture

Step 1
Analyze the System Using STPA

Step 2
Define Solution-Neutral System Requirements

Step 3
Define System-Level Behavior

Step 4
Create and Assess Architecture Options

Safety-relevant information can be used to drive architecture development.
System Requirements Include Safety Considerations From the Beginning

• STPA is performed at the beginning of the design process

• System requirements are generated based STPA analysis and considers how undesirable system behavior can be prevented

Example Requirements for Safe EMS Flight:

• The system must respond within <threshold time> under <worst-case weather conditions> to change the desired flight path and avoid a collision

• The system must be able to detect all objects and other aircraft in the environment, even when visibility is suboptimal
System Design Defined Based On Need to Enforce Safety Constraints

• Determine the behavior of the system and interactions needed to enforce safety constraints

• Systematically define each element of a control loop (e.g. functions/responsibilities, control actions, feedback) to achieve adequate control

Example Requirement: The system must respond within <threshold time> under <worst-case weather conditions> to change the desired flight path and avoid a collision

- **Function:** Respond by selecting control inputs based on current and desired flight path, accounting for weather effects
- **Control Actions:** Roll/Pitch/Yaw inputs to aircraft
- **Feedback Needed:** Current weather conditions, Current aircraft position and speed, Effects of weather on aircraft handling
System-Level Behavior informs which functions should be assigned to which components and compare different assignment options.

Example Considerations for Enabling Safe EMS flight:

• Should the responsibility for selecting control inputs be assigned to the pilot or the automated controller?

• What are the pros/cons of having the pilot or automated controller select control inputs?
Summary

New method is a structured, safety-driven approach to creating and assessing system architectures

- Considers interactions and unsafe behavior early in the design process
- Uses safety-relevant information to drive the identification of system requirements and the creation of a system architecture
- Ensures that safety is designed into the system from the beginning

Step 1
Analyze the System Using STPA

Step 2
Define Solution-Neutral System Requirements

Step 3
Define System-Level Behavior

Step 4
Create and Assess Architecture Options
Questions?

• Feel free to contact me with any questions/comments: jpoh@mit.edu

• Thesis available to download from https://www.justinpoh.com/publications.html
 • Describes how each step in the method is performed
 • Case study is developed in detail including descriptions of the architecture options and how they were assessed to determine the tradeoffs between them