OPEN STPA WITH RAAML AND GAPHOR

2021 STAMP Workshop

Dan Yeaw & Kyle Post
A VIBRANT COMMUNITY

We want to build an open community for systems safety

• A low barrier to join, learn, and grow 🚶
• Diverse contributors who want to help 🛠️
• Built on open standards and open source software
SAFETY STANDARDS

- Each industry has developed domain specific standards, most derived from IEC 61508
- New techniques, like STPA, can improve how we do safety analysis
- However, may lack rigor without a standardized and consistent language and automation
RAAML

- Precise language for systems safety
- OMG spec 1.0 beta available, final release soon
- STPA metamodel library based on the STPA Handbook
- Facilitates exchange of info between tools and organizations
An open source UML, SysML, and now RAAML modeling tool written in Python
Fast and easy to use, while still having a full data model
Improves rigor through consistency, helps add automation
Step 1: Define Purpose of the Analysis
Step 2: Model the Control Structure
Step 3: Identify Unsafe Control Actions

- UnsafeControlAction: NotProvided (from Part of Profile)
- UnsafeControlAction: Provided (from Part of Profile)
- UnsafeControlAction: Early (from Part of Profile)
- UnsafeControlAction: Late (from Part of Profile)
- UnsafeControlAction: OutOfSequence (from Part of Profile)
- UnsafeControlAction: TooShort (from Part of Profile)
- UnsafeControlAction: TooLong (from Part of Profile)

- UnsafeControlAction: BSCU Autobrake does not provide the Brake control action during landing roll when the BSCU is armed
- UnsafeControlAction: BSCU Autobrake provides Brake control action during a normal takeoff
- UnsafeControlAction: BSCU Autobrake provides Brake control action with an insufficient level of braking during landing roll
- UnsafeControlAction: BSCU Autobrake provides Brake control action with directional or asymmetrical braking during landing roll
- UnsafeControlAction: BSCU Autobrake provides the Brake control action too late (> TBD seconds) after touchdown
- UnsafeControlAction: BSCU Autobrake stops providing the Brake control action too early (before TBD taxi speed attained) when aircraft lands

- ControlAction: Brake Cmd (from Tigrak)
Step 4: Identify Loss Scenarios

Context: The BSCU is armed and the aircraft begins landing roll.

Situation

Loss Scenario

(From root of tree)

Process Flow
The BSCU does not provide the Brake control action.

Cause Factor
This flawed process model will occur if the received feedback momentarily indicates zero speed during landing roll. The received feedback may momentarily indicate zero speed during anti-skid operation, even though the aircraft is not stopped.

Context: The BSCU is armed and the aircraft begins landing roll.

Situation

Loss Scenario

(From root of tree)

Process Flow
The BSCU incorrectly believes the aircraft has already come to a stop.

Cause Factor
This flawed process model will occur if the touchdown indication is not received upon touchdown.
For more information see:

https://omg.org/spec/RAAML

https://gaphor.org