Applying STPA in development of autonomous container handling machinery

Eetu Heikkilä, eetu.heikkila@vtt.fi
Timo Malm, timo.malm@vtt.fi
Janne Sarsama, janne.sarsama@vtt.fi
Risto Tiusanen, risto.tiusanen@vtt.fi

VTT Technical Research Centre of Finland Ltd.
Introduction

- AUTOPORT project (https://autoport.fi) studies digital technologies and automation in port terminals.
- We have studied the applicability of STPA in the development of autonomous container handling machinery, and compared the method with HAZOP.
- This presentation consists of:
 - Evaluation categories for comparing hazard analysis methods in the context of autonomous mobile machinery.
 - Findings of a case study applying STPA and comparison with HAZOP.
Increasing level of automation is a global trend.

Highly automated port terminals already exist in large seaports. Safety is addressed by placing automated machinery in areas fully separated from other traffic.

Now also smaller ports are looking for improved efficiency using increasingly automated and even autonomous systems.

- To maintain flexibility of operations, separation from other traffic is not possible.
- This introduces new mixed-traffic situations involving autonomous and manually operated machines and humans → new hazards need to be considered.
System-level safety considerations

- The port environment is a complex socio-technical system consisting of several elements, including:
 - Automated and manually operated machinery
 - Other traffic
 - Workers representing several organizations
 - ICT systems
 - etc…

- Often the safety issues are related not only to the operation of the automated machine, but to the integration of these different elements.
 - Traditional machinery safety methods do not fully cover identification of these issues → potential application area for STPA.
Comparison of hazard analysis methods

- Categories applied in the evaluation of STPA applicability and comparison with HAZOP:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Capability to discover unique autonomy-related hazards</td>
</tr>
<tr>
<td>C-2</td>
<td>Scope and limitations of the analysis</td>
</tr>
<tr>
<td>C-3</td>
<td>Quality and characteristics of the analysis output documentation</td>
</tr>
<tr>
<td>C-4</td>
<td>Expertise and knowledge of the method required to perform analysis</td>
</tr>
<tr>
<td>C-5</td>
<td>Approach to system modelling and required background documentation</td>
</tr>
<tr>
<td>C-6</td>
<td>Tools and work methods suitable for carrying out the analysis</td>
</tr>
<tr>
<td>C-7</td>
<td>Need for other analysis methods</td>
</tr>
</tbody>
</table>
System elements (simplified excerpt from STPA)

- Humans
 - Human operator
 - Terminal operating system
 - Area access control
 - Equipment control
 - Autonomous container handling machine

- ICT systems
 - Equipment control
 - Area access control

- Organizations
 - Site owner
 - Traffic infrastructure
 - Other traffic, pedestrians

- Machinery, equipment
 (detailed technical system analyses performed separately)
For the most part, STPA and HAZOP identified similar hazards, many of which were related to timing or order of commands (supported by guide words).

STPA emphasizes consideration of the context (e.g. different operational modes or situations), leading to more descriptive scenarios than HAZOP.

HAZOP focuses only on deviations, whereas STPA also looks at issues in the intended operation.

STPA focuses the analysis activities efficiently, whereas HAZOP identifies any deviations – also ones with no significant effects.
Findings from autonomous operation STPA case study and HAZOP comparison (2/2)

- In STPA, modelling of the control structure requires expertise but it can also provide better understanding of the system.
- In STPA, the defined syntax and heavily text-based nature of outputs ensure quality and consistency, but sometimes hinder the method’s use as a group brainstorming tool.
- STPA requires deeper understanding of the method from the analysis participants. Skilled facilitator is needed in both analyses.
- Both STPA and HAZOP are identification methods (no risk ranking or prioritization).
Conclusions

- Automation in port terminals is progressing towards autonomy and mixed-traffic operations, introducing new safety issues.
- Our study represents one of the first applications of STPA in the heavy mobile machinery domain.
- We found STPA to be well suited for identification of hazards and accident scenarios related to increasing autonomy of machinery.
 - Other methods are still needed as well in machine system development, e.g. for functional safety.