Effectiveness of CAST, 5M and HFACS in Accident Investigation and Prevention

LtCol Günter KÄFER, MAS MBA Meng
Austrian Air Force

Ioana KOGLBAUER, PhD
Graz University of Technology, Austria

STAMP Workshop 2021
Agenda

➢ Introduction
➢ Case Study
➢ 5M
➢ HFACS
➢ STAMP/CAST
➢ Results and Outlook

Source: https://www.pinterest.at/pin/551409548120671421/
“It all depends on how we look at things, and not how they are in themselves.”

C.G. Jung

Source: https://i.pinimg.com/236x/06/50/b7/0650b704b1f940db719e0dc954aa168b--fruit-salads-fruit-bowls.jpg
Motivation: further development of Flight Safety System & test effectiveness of different tools for practical application

Research Question: determine differences between specific accident analysis models

Method: qualitative and quantitative, comparative analysis of different accident analysis methods.
Case Study

Loss of Tail-Rotor Effectiveness (LTE)

Source: YouTube
Case Study

- Light helicopter
- Unplanned Outside Landing
- High Mountainous Terrain
- High TOW
- High Density Altitude
- Low Airspeed
- Tailwind

→ Loss of Tail-Rotor Effectiveness (LTE)

Source: BMLV, Gorup & Käfer
Accident Investigation after 5M

- Items (34)
- Findings & Causes (14)
- Error Chain (7)
- Recommendations (5)

Diagram showing the distribution of items, findings, causes, error chain, and recommendations.
HFACS

ORGANISATIONAL INFLUENCES

- Resource Management
- Organisational Climate
- Organisational Process

UNSAFE SUPERVISION

- Inadequate Supervision
- Planned Inappropriate Operations
- Failed to Correct a Known Problem
- Supervisory Violations

PRECONDITIONS FOR UNSAFE ACTS

- Physical Environment
- Technological Environment
- Physical/Mental Limitations
- Adverse Mental States
- Adverse Physiological States
- Crew Resource Management
- Personal Readiness

UNSAFE ACTS OF OPERATORS

- Decision Errors
- Skill-Based Errors
- Perceptual Errors
- Violations

Source: https://www.researchgate.net/profile/Gizem_Serin/publication/326478796/figure/fig1/AS:650030385995776@1531990729001/Overview-of-Human-Factor-Analysis-and-Classification-System-HFACS-Adapted-from.png

Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRb6yiw2pfk7NqbsVsnsZO_71-0V4O4GCWjhR-4Dtx_N6aXc96S
<table>
<thead>
<tr>
<th>Resource Management</th>
<th>Organizational Climate</th>
<th>Organizational Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant budget restraints</td>
<td>Struggle for survival</td>
<td>Self-promoting of the squadron</td>
</tr>
</tbody>
</table>

Organisational Influences

Unsafe Supervision

<table>
<thead>
<tr>
<th>Inadequate Supervision</th>
<th>Planned Inappropriate Operations</th>
<th>Failed to Correct a Known Problem</th>
<th>Supervisory Violations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient constraints against “adapted” regulations</td>
<td>NIL</td>
<td>No FSTD</td>
<td>Deviation of standard mission preparation time</td>
</tr>
</tbody>
</table>

Unsafe Events

<table>
<thead>
<tr>
<th>Physical Environment</th>
<th>Technological Environment</th>
<th>Physical/Mental Limitations</th>
<th>Adverse Mental State</th>
<th>Adverse Physiological State</th>
<th>CRM</th>
<th>Personal Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpine terrain</td>
<td>LTE-susceptible A/C</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>Low but sufficient</td>
</tr>
<tr>
<td>No vegetation</td>
<td>Ineffective consideration of tail rotor limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preconditions for Unsafe Acts

<table>
<thead>
<tr>
<th>Decision Errors</th>
<th>Skill-Based Errors</th>
<th>Perceptual Errors</th>
<th>(Routine) Violations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neglect of general wind direction</td>
<td>Only theoretical knowledge of LTE</td>
<td>Surface wind conditions not recognized</td>
<td>No W&B</td>
</tr>
<tr>
<td>Rely on wind-drift</td>
<td>Possibly incorrect LTE-countermeasures</td>
<td></td>
<td>Excess MTOW</td>
</tr>
<tr>
<td>Approach with tailwind</td>
<td></td>
<td></td>
<td>Insufficient preparation</td>
</tr>
</tbody>
</table>

HFACS Overlay to 5M
HFACS Overlay to 5M

Failed to Correct a Known Problem
- No FSTD
- No learning from past occurrences
- Insufficient procedures for OSL

Physical Environment
- Alpine terrain
- No vegetation
- Light winds

Technological Environment
- LTE-susceptible A/C
- Ineffective consideration of tail rotor limits

Personal Readiness
- Low but sufficient
- Inert LTE-Knowledge

Decision Errors
- Neglect of general wind direction
- Rely on wind-drift
- Approach with tailwind

Skill-Based Errors
- Only theoretical knowledge of LTE
- Possibly incorrect LTE-countermeasures

Perceptual Errors
- Surface wind conditions not recognized

(Routine) Violations
- No W&B
- Excess MTOW
- Insufficient preparation
- OSL against valid rules

Unorganisational Influences

Unsafe Supervision

Preconditions for Unsafe Acts

Unsafe Acts of Operators
Pilot in Command

Safety Requirements and Constraints Violated:
- no preflight-planning including W&B
- no operational and tactical contingencies
- A/C-operation in accordance with publications
- no planning of safety margins
- no communicate restrictions, if necessary
- no use of purposeful means to ensure safe OSL
- no mission briefing

Context:
- last flight during a two-week live exercise
- “simple” mission
- supposed SA for mission orders at short-notice
- OSL inside reconnaissance area
- focus on engine torque limits, not tail-rotor limits
- over-reliance in regard to A/C-power
- no FSTD available for emergency training

Mental/Process Model Flaws:
- unplanned and unbrieﬁed high mountain OSL
- exceedance of MTOW not recognized
- LTE-enabling factors not consciously present
- wrong feeling of LTE-controllability and safety
- no desire to gain maximum safety buffer
- unplanned OSL generally accepted and tolerated
- rather “exercise” than operational mindset

Dysfunctional Interactions:
- did not question the landing site in terms of tactics
- ineffective CRM

Contributory Control Actions:
- no W&B
- A/C fueled to its maximum
- approach to OSL with tailwind
- possibly ineffective LTE-management

Missing or Imperfect Feedback:
- insufficient A/C drift cues due to light wind
- no or insufficient visual cues for surface wind assessment
- rapid change of A/C behaviour without warning signs

Controller
Model of controlled Process
Control Actions
Feedback
Controlled Process

• Possible Questions
• Safety Constraints

- Safety Requirements & Constraints
- Context
- Mental/Process Model Flaws
- Dysfunctional Interactions

Source: Käfer
STAMP / CAST Analysis

Society → Political Administration → Ministry of Defense

A/C-Manufacturer → Armed Forces → MoD Safety Cell

Air Force Level → Air Force SMS

Brigade Level → Brigade SMS

Helicopter Squadron → Aerial Reconnaissance Unit

LiveEx-Organization & BAE → Helicopter Detachment Commander

Environmental Factors

- Wind
- Terrain
- Altitude
- Temperature

PIC → FLIR-Operator → ARP1

Helicopter

Area of STAMP/CAST-Analysis

QR

4
8
28
4
58
107

SC

23
10
9
5
8
61

www.tugraz.at

STAMP Workshop 2021
Comparison of Results - Quantitative

5M vs. CAST - Quantitative Comparison

- Items (34)
 - 5M: 40
 - CAST: 20
- Causes (14)
 - 5M: 20
 - CAST: 10
- Possible Questions (32+75)
 - 5M: 32
 - CAST: 75
- Safety Constraints (61)
 - 5M: 61
 - CAST: 61
Comparison of Results - Quantitative

5M-Items vs CAST Questions Raised

5M: 34
CAST: 107

5M-Causes vs CAST Safety Constraints

5M: 14
CAST: 61
Comparison of Results - Quantitative

HFACS-Overlay

"Down and In"

"Up and Out"

5M- Items 5M-Causes CAST - Questions Raised CAST - Safety Constraints

- Unsafe Acts
- Preconditions for Unsafe Acts
- Unsafe Supervision
- Organizational Influences
Comparison of Results - Qualitative

5M Analysis

Considered Levels: 3

STAMP/CAST Analysis

Considered Levels: 7
Comparison of Results - Qualitative

5M-Model:

+ simple model
+ suitable for quick risk assessment
+ retrospective and prospective use possible

- lack of instructions how to use
- no interactions and processes analysed
- no systemic approach
- focus on operational level
- no graphical illustration
- reduced number of findings and recommendations
Comparison of Results - Qualitative

HFACS:
+ based on Swiss-Cheese-Model
+ broad focus up to organizational level
+ clear aviation-related taxonomy
+ easy to understand, simple method

- classification (not a model)
- little power in determining the causality
- no interactions and processes analysed
- only retrospective use possible
- simplistic view of human factors
- lack of systemic or procedural factors
STAMP/CAST:
+ comprehensive and up-to-date model
+ focus on systemic interactions and developments
+ suited for big-scale analyses
+ enables to raise the right questions (context, why?)
+ raises many questions, by that best answers
+ helps to determine effective preventive actions
+ steep learning curve

- great amount of data and domain knowledge
- complex and extensive model
- not a simple application at operational level
Future work with STAMP/CAST

- Tailored models specific for the organisation and its processes
- Templates that are easy applicable to foster acceptance in the organization
- Using STPA to improve the Safety Management System simplifies the application of CAST
Thank you for your attention!

Science · Passion · Technology