Using STPA and CAST to Design for Serviceability and Diagnostics

Hannah Slominski

Advisor: Nancy Leveson
“Why does it say paper jam, when there is no paper jam!?!?”
-- Samir Nagheenanajjar (Actor: Ajay Naidu), Office Space 1998
Motivation

Increased challenges meeting customer needs for equipment serviceability and support

• Increased product complexity
• Fast rate of technology change
• Technician shortages
• Increasing cost of machine unavailability
Motivation

Finally a method that accounts for emerging behavior and manages system complexity!

Curious about STPA applications beyond safety

- Security (Young & Leveson, 2013)
- Producibility (Ball, 2015)
- Quality (Goerges, 2013)
- Testing (Montes, 2016)
Purpose

Can STPA and CAST be used to improve product serviceability?

- Can it generate hardware and software serviceability requirements?
- Can it generate recommendations for the product development?
- Are any analysis modifications are required?

Can safety-STPA control structure be reused for serviceability?
Approach

CAST Case Study

• Existing diagnostic issue
• Analyzed full hierarchical control structure

STPA Case Study

• Future system early in conceptual phase, software-intensive
• Safety analysis, then serviceability analysis
Case Study 1: CAST Results

3 Physical Process Recommendations
6 Physical Process Control Recommendations

9 Product Support Recommendations
7 Product Design Recommendations
5 Product Test Recommendations
10 Management Recommendations
4 Key Systemic Factors

Key Insight –
Addressing the physical process and control is the tip of the iceberg
Case Study 2: STPA Results

Analyzing just two UCA’s generated:

16 Software, hardware and technical information requirements
10 Development process recommendations

Key Takeaway – STPA successfully generated serviceability requirements for a complex system in the conceptual design phase
Terminology

<table>
<thead>
<tr>
<th>STAMP Term</th>
<th>STAMP Definition</th>
<th>Proposed Service STAMP Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss</td>
<td>A loss involves something of value to stakeholders. Losses may include any loss that is unacceptable to the stakeholders. (Leveson, 2011)</td>
<td>Loss</td>
</tr>
<tr>
<td>Accident</td>
<td>An accident is an unplanned and undesired loss event. (Leveson, 2011)</td>
<td>Loss Event</td>
</tr>
<tr>
<td>Hazard</td>
<td>A hazard is a system state or set of conditions that, together with a particular set of worst-case environmental conditions, will lead to a loss. (Leveson & Thomas, 2018)</td>
<td>Hazard</td>
</tr>
<tr>
<td>Unsafe Control Action</td>
<td>An Unsafe Control Action (UCA) is a control action that, in a particular context and worst-case environment, will lead to a hazard. (Leveson & Thomas, 2018)</td>
<td>Unserviceable Control Action</td>
</tr>
</tbody>
</table>
Losses

Unplanned downtime due to inadequate serviceability (L-1)
Financial losses incurred through warranty costs (L-2)
Customer dissatisfied (L-3)

Key Takeaway – Leverage broad definition of a loss

A loss involves something of value to stakeholders. Losses may include any loss that is unacceptable to the stakeholders. (Leveson, 2011)

Massachusetts Institute of Technology
Hazard Examples

Operator takes the wrong action to mitigate the problem or ignores a service alarm (L-1, L-3)

Service technician does the wrong repair (L-1, L-2, L-3)

Machine falsely indicates a problem (L-1, L-2, L-3)

Repair & troubleshooting time exceeds <X> minutes (L-1, L-2, L-3)
Key Takeaway – Service tasks are the controls
Table 3: Service Responsibilities - Physical Process Control System (PCU)

<table>
<thead>
<tr>
<th>General Responsibilities</th>
<th>Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor conditions</td>
<td></td>
</tr>
<tr>
<td>Detect and decide when problems exist that require service action</td>
<td>X</td>
</tr>
<tr>
<td>Protect the machine from damage when problems are detected</td>
<td>X</td>
</tr>
<tr>
<td>Isolate problems and determine the repair required</td>
<td>X</td>
</tr>
<tr>
<td>Alarm the operator and technician to problems and communicate control action needed</td>
<td>X</td>
</tr>
<tr>
<td>Provide automatic troubleshooting aids: display relevant values, provide diagnostic tests and calibrations</td>
<td>X</td>
</tr>
<tr>
<td>Detect and decide when problems are fixed</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Service Responsibilities – Operator (OP)

<table>
<thead>
<tr>
<th>General Responsibilities</th>
<th>Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate the equipment in a way that does not lead to machine damage</td>
<td></td>
</tr>
<tr>
<td>Monitor equipment condition and alarms</td>
<td></td>
</tr>
<tr>
<td>Maintain the equipment: Applicable to loss event listed below</td>
<td></td>
</tr>
<tr>
<td>Check and maintain hydraulic oil level</td>
<td>X</td>
</tr>
<tr>
<td>Change oil filter (when restricted or per regular interval?)</td>
<td></td>
</tr>
<tr>
<td>Respond to problems that occur</td>
<td></td>
</tr>
<tr>
<td>Follow DTC and operator manual instructions</td>
<td>X</td>
</tr>
<tr>
<td>Request service support</td>
<td></td>
</tr>
<tr>
<td>Communicate observed symptoms to service technician</td>
<td></td>
</tr>
</tbody>
</table>

Key Takeaway – Generated reusable general responsibilities and specific to the loss event. Reused in STPA case study
Table 12: Service Responsibilities - Operator (OP)

<table>
<thead>
<tr>
<th>ID</th>
<th>Responsibilities</th>
<th>Feedback Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP.R.1</td>
<td>Operate the equipment in a way that does not lead to machine damage or machine</td>
<td>TI DTC alarms, other system DTC alarms, TI disabled status, machine operating</td>
</tr>
<tr>
<td></td>
<td>unavailability</td>
<td>conditions, visual monitoring</td>
</tr>
<tr>
<td>OP.R.1.1</td>
<td>Manually control the function because TI is disabled</td>
<td>TI disabled status (if not observable without an indicator, machine must provide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>active feedback), visual monitoring</td>
</tr>
<tr>
<td>OP.R.2</td>
<td>Maintain the equipment</td>
<td>Maintenance required indicator</td>
</tr>
<tr>
<td>OP.R.2.1</td>
<td>Clean TI sensors</td>
<td>Sensor dirty status (if not observable from the operator seat), visual inspection</td>
</tr>
</tbody>
</table>

Key Takeaway – Some design requirements become apparent even before generating UCAs.
UCA Examples

PCU Control Action: Provide “replace component” code

- **UCA:** Physical process control unit (PCU) provides “replace component” code when component does not need replacement (H-1, H-2)

Technician Control Action: Replace component

- **UCA:** Service technician replaces component when it does not need replacement (H-2, H-6)
Conclusions

Successfully demonstrated STAMP applied to serviceability
- Same STPA and CAST steps
- Leverage broad definition of a loss
- Incremental process guides a service-friendly design

Generated hardware, software, and service instructions requirements simultaneously
Safety and Serviceability Alignment

STAMP elements:

– Reuse higher levels of control structure
– Different lower levels of control structure
– Different hazards and UCAs

Design considerations:

– Operator’s responsibility to monitor alarms
Other Insights

Reliability ≠ Safety

Reliability ≠ Machine Availability
Other Insights

Use service information to drive desired human behavior vs. identify a “root cause”
Better options:

1. Provide information that drives desired operator behavior (example: restart)

2. Don’t have an active alarm
References

