Model-Based Certification of Automated Vehicles

Michael Schmid
July 31, 2020
Goal of this presentation

Provide an answer to the question ...

How can we certify vehicle automation?
Outline

> Motivation: Safety Problem with AVs

> Model-Based Approach to Safety and Certification

> Implementation of Model-Based Certification
Outline

> Motivation: Safety Problem with AVs

> Model-Based Approach to Safety and Certification

> Implementation of Model-Based Certification
The Age of AVs is right in front of us!

“deploy ‘thousands’ of self-driving cars in 2018”

“Level 4 vehicle in 2021, no gas pedal, no steering wheel, and the passenger will never need to take control of the vehicle in a predefined area.”

“highly and fully automated driving into series production by 2021.”
The age of AVs is right in front of us!

Is it?

“none of us in the automobile or IT industries are close to achieving true Level 5 autonomy. We are not even close.”
What is holding back progress?

• Legal challenges
• Lack of social acceptance
• High complexity is a challenge
• Strong economic competition vs. safety
• Security?

>>> many blocking points are safety-related!
Pending Safety-Related Questions

How safe is safe enough?

How to manage complexity?

Perception dependable?

Safety compared to a human driver? Trustworthiness?

AV insurance?

Guidance through Certification?
Outline

- Motivation: Safety Problem with AVs
- Model-Based Approach to Safety and Certification
- Implementation of Model-Based Certification
What are the challenges?

“Driverless cars will require one billion lines of code”

- Overwhelming amount of software
- Technical variety & changes over time
- High complexity

>>> no space for looking at details – abstraction needed!
How to abstract?

- Effectiveness in early stages of development
- Ability to account for problems beyond mechanical failures
- Provide guidance on measures to achieve desired properties (e.g. safety)

>>> Abstraction based on Control Theory >>> STPA!
How can we create this abstraction?

Conceptual Architecture: a control-theoretic abstraction of a system that serves as a concept for physical design.
How can we use this for certification?

Conceptual Architecture → Safety Analysis → Safety Requirements → design → verification → Certification Documents

> Baseline for Certification
Some Results ...
Initial Socio-Technical Control Structure

- Standardization Organizations
 - Standards, Processes
 - Regulation needs
 - Methods, Processes, etc.
 - Technological Know-How
 - Current Glass

- Research Institutions
 - Training requirements
 - Training procedures

- Regulators
 - Requirements
 - Certification
 - Vehicle design

- Vehicle Manufacturers
 - Maintenance Instructions
 - System design
 - System Information
 - Recommendations for operation
 - Training Performance Evaluation
 - Regulation needs

- Maintenance Providers
 - System Information
 - Recommendations for operation

- Vehicle Dealerships
 - System Information
 - Recommendations for operation
 - Vehicle speed
 - Gear selection
 - RPM

- Operator Companies
 - Operational Concept
 - Report misuse/Incidents/accidents
 - Operational procedures

- Training Institutions
 - Regulation needs

- Vehicle Operator(s)
 - Throttle Brake
 - (De-activate Autonomous Driving)
 - Automated Vehicle

- Equipment Suppliers
 - Equipment limitations
 - Requirements
 - Equipment Information
 - Recommendations for operation

- Safety Administration
 - Investigation methods
 - Causal Factors
 - Safety Information

- Accident Investigation
 - Causal Factors

Zoom-in: Initial Operational Control Structure

Vehicle Operator(s)

Automation Software

Vehicle

Env.

Automated Vehicle

Throttle
Brake
Shift
Steer
Set parking brake
Sound horn
Turn on engine
...
Conceptual Architecture and Safety Requirements

R-8: The driver must be informed whenever the vehicle is in automated mode.
R-9: The automation must not allow re-activation after a collision until the vehicle has been checked by maintenance.

R-10: The communication channel between the automation and the braking system must never prevent braking.
R-11: Braking must never be prevented by a compromised braking system (including brake actuators).
Outline

> Motivation: Safety Problem with AVs

> Model-Based Approach to Safety and Certification

> Implementation of Model-Based Certification
Organizational Implementation

Figure 4-1: Organizational structure for model-based certification.
Certification - New Developments

Figure 4-2: Process steps for the certification of new developments.
Certification - Changes to Existing Systems

Figure 4-3: Steps for the certification of changes to existing systems.
Certification - Changes in the Operating Environment

Figure 4-4: Steps for the certification within a changing environment.
Conclusion

Regulators: Analysis

Manufacturers: Design

Benefits

- separation of concerns
- reduced effort (regulators & OEMs), cost
- guidance in liability questions
- basis for new insurance concepts
- support for OEM-supplier interactions, etc.
- ...

Please contact schmidm@mit.edu for any questions!

© Copyright 2020 Michael Schmid
Questions?

The thesis on this topic can be downloaded from https://michael.systems

or

https://www.linkedin.com/in/michael-schmid-b72027100/

or

http://psas.scripts.mit.edu/home/
Appendix
Expected Benefits of Automated Vehicles

• Increased mobility & comfort
• Less parking problems
• Less traffic congestion
• Better fuel economy
• Faster transportation
• Higher level of safety
Conceptual Architecture Generation Process – Step 1: Losses & System Hazards

Losses

L-1: Loss of Life or Injury of People

L-2: Loss of or Damage to Vehicle

...

Hazards

H-1: Vehicle does not maintain a safe distance to other vehicles or objects [L-1,2,3,4,5,6]

H-2: Vehicle leaves authorized or designated roadway [L-1,2,3,4,5]

...
Conceptual Architecture Generation Process – Step 3: Perform Safety Analysis (UCAs)

Table 3.1: Design constraints generated from UCAs.

<table>
<thead>
<tr>
<th>DC-1: The Safety Driver must not activate the automation when the vehicle controls have not been calibrated(^1)</th>
<th>UCA-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-2: The Safety Driver must provide braking when the vehicle's path is not clear(^5)</td>
<td>UCA-27</td>
</tr>
<tr>
<td>DC-3: The Safety Driver must provide steering when automated steering is inconsistent with vehicle speed(^6)</td>
<td>UCA-35</td>
</tr>
</tbody>
</table>
Conceptual Architecture Generation Process – Step 3: Perform Safety Analysis (Scenarios)

UCA-74: Automation provides throttle when the vehicle’s path is not clear (e.g. at a traffic light or junction). [H-14]

Scenario-1: The automation does not recognize that the vehicle’s path is not clear. This flawed process model may be due to:

a) The automation does not receive information about obstacles around the vehicle.

b) The automation identifies a pedestrian that is about to enter the vehicle’s path but interprets it as a dummy (e.g. because the person is not moving and is interpreted as a mock-up).

c) The feedback that the vehicle’s path is not clear is provided only once the vehicle is close enough to the obstacles in the path (e.g. detection distance limitations of sensors).

DC-16: The automation must receive information about the vehicle’s environment.

DC-17: The automation must always provide the most conservative estimate of its detections (obstacle type, speed, etc.).
Conceptual Architecture Generation Process – Step 4: Refine Control Structure

“The automation must receive information about the vehicle’s environment” (DC-16)
“The automation must account for all potential future positions of obstacles around the vehicle’s planned path” (DC-18)

>>> need control structure elements for perception and prediction

see Conceptual Architecture next page
Model-Based Safety Analysis (STPA) – Unsafe Control Actions

Table 3.2: Unsafe Control Actions – Automation.

<table>
<thead>
<tr>
<th>Control Action</th>
<th>Not Providing</th>
<th>Providing</th>
<th>Provided Too Early / Too Late</th>
<th>Provided For Too Long / Stopped Too Soon</th>
</tr>
</thead>
<tbody>
<tr>
<td>brake</td>
<td>Automation does not provide a brake command after the vehicle has suffered a collision and the vehicle must stop. (UCA-1) [H-1] [H-123]</td>
<td>Automation provides excessive braking when a following vehicle cannot decelerate in time. (UCA-2) [H-1]</td>
<td>Automation stops providing brake command too early when vehicle speed is still above speed limits (e.g. traffic flow limit). (UCA-3) [H-1234]</td>
<td>Automation stops providing brake command too soon when a collision is imminent. (UCA-4) [H-1]</td>
</tr>
<tr>
<td>throttle</td>
<td>Automation does not provide throttle when a speed increase is required to avoid a rear or side collision. (UCA-5) [H-1]</td>
<td>Automation provides throttle when vehicle is under maintenance. (UCA-6) [H-13]</td>
<td>Automation provides throttle too early before the vehicle’s path has become clear (e.g. dynamic obstacles slower than anticipated, etc.). (UCA-7) [H-14]</td>
<td>Automation provides throttle for too long until forward collision becomes imminent. (UCA-8) [H-1]</td>
</tr>
<tr>
<td>steering</td>
<td>Automation does not provide steering when the vehicle’s lane is about to end. (UCA-9) [H-1]</td>
<td>Automation provides steering when it steers the vehicle into a collision (e.g. lane keeping feature). (UCA-10) [H-1]</td>
<td>Automation provides steering too late after merging is no longer possible (e.g. gap closed by another vehicle). (UCA-11) [H-14]</td>
<td>Automation stops providing steering too early before the maneuver is finished. (UCA-12) [H-14]</td>
</tr>
</tbody>
</table>
UCA-1: Automation does not provide a brake command after the vehicle has suffered a collision and the vehicle must stop. [H-1][2][3]

Scenario-6: The automation recognizes the collision but decides that it is safer to keep travelling. This flawed control algorithm may occur because:

a) The automation software is programmed to evaluate risk and to transition to a minimal risk condition after a collision. As a result, the vehicle decides that it is safer to travel to the next safe stopping point off the highway rather than stopping on the highway and continues to the next exit.

b) The automation software was programmed to forego providing brake commands after detecting a collision in order to prevent false positives, e.g. on highways when there is no collision, but the vehicle detects a collision. However, as collision detection systems mature and achieve higher dependability, this behavior is no longer justified.

c) The automation software was programmed incorrectly and there is an error in the automation software.

R-4: The automation must never make decisions based on estimated risk after the vehicle has suffered a collision.

R-5: The vehicle must never continue moving after it has suffered a collision except to the side of the road.

R-6: The automation must never forego brake commands to slow down after a collision has been detected.

R-7: The certification of automation software must ensure that adequate development practices were used to minimize software errors.
Standards and Practices

> Establish practices for AV development:

- ISO 26262: Road vehicles – Functional safety
- ISO 21448: Safety of the Intended Functionality
- UL 4600: Standard for Safety for the Evaluation of Autonomous Products

• Inadequate for software, human factors, etc.
• Based on quantification of risk
• Assumption of complete set of requirements
• Simulation, testing, and statistics used as means to demonstrate safety
• …

... still accidents > learn from them?

• Technical limitations
• Reliance on human supervision
• Misuse of automation features
• Misleading marketing
• Awareness of limitations
• …

>>> gaps in practices & not enough accidents!
Existing Standards and Practices

- ISO 26262 and ISO 21448 (SOTIF)
- UL-4600
- AUTOSAR
- DO-178C
- MIL-STD-882E
- MISRA-C
- Safety First For Automated Driving [Aptiv, Audi, BMW et al.]
- Measuring Automated Vehicle Safety [RAND Corporation]
- Federal Motor Vehicle Safety Standards (FMVSS)
- ...

Limitations

- Inadequate for software, human factors, etc.
- Based on quantification of risk
- Assumption of complete set of requirements
- Simulation, testing, and statistics used as means to demonstrate safety
- ...

Existing Standards and Practices
Learning from Accidents

Common factors:

- Driver inattentiveness & over-reliance

- Insufficient feature functionality & maturity, e.g.
 - Smart Summon feature and accidents in
 - Accidents in Williston (FL), China, Mountain View (CA), and Delray Beach (FL)

- Misleading marketing (see Tesla “Autopilot”)

- Invalid assumptions (see Uber accident in Tempe, AZ)

- ...
Other Attempts

Approaches by component suppliers

- Mobileye: Responsibility-Sensitive Safety
- NVIDIA: Safety Force Field (SFF)
References I

Slide 1:
• https://zenprospect-production.s3.amazonaws.com/uploads/pictures/5dd3e07c376d300001f8b1e0/picture
• https://media-exp1.licdn.com/dms/image/C4E0BAQGFNL7t1x8Qjg/company-logo_200_200/0?e=2159024400&v=beta&t=FuFpIJMzwSDNuHlkD7KWLMd0y31KvwL5b6Qyvmv9qnQI

Slide 5:
• https://www.bodyshopbusiness.com/bmw-intel-mobileye-fully-autonomous-driving-2021/
• https://currentev.com/blog/the-self-driving-car-what-is-it-when-will-it-happen-plans-of-top-11-global-automakers/
• https://www.stockio.com/free-icon/scanning-horizon
Slide 6:

- https://www.stockio.com/free-icon/scanning-horizon
- https://cdn.vox-cdn.com/thumbor/UMjM1S7Ncpiw6On67KEd0wJo8YE=/0x0:2822x2117/1200x800/filters:focal(1186x834:1636x1284)/cdn.vox-cdn.com/uploads/chorus_image/image/49794921/wFlcpFG.0.jpg

Please contact schmidm@mit.edu for any questions!
References III

Slide 7:

Slide 10:
• https://www.autoexpress.co.uk/car-news/106617/driverless-cars-will-require-one-billion-lines-of-code-says-jlr
• https://pbs.twimg.com/media/CzliWIOXgAAzDul.jpg:large
• https://d2n4w9orp1vta.cloudfront.net/cms/brand/ABG/evergreen-images/gm-cruise-logo-2019-o.jpg; width=550; quality=60
• https://michiganvca.org/wp-content/uploads/2018/08/nuTonomy-for-site-300x300.png

Slide 13:
References IV

Slide 13 (continued):

Slide 26:

Slide 33:
• https://s.abcnews.com/images/Business/tesla-crash-calif-ap-ps-200212_hpMain_16x9_1600.jpg
References V

Slide 33 (continued):