

System-Theoretic Process Analysis for Security (STPA-SEC): Cyber Security and STPA

William Young Jr, PhD

2019 STAMP Conference Boston, MA

March 25, 2019

Disclaimer:

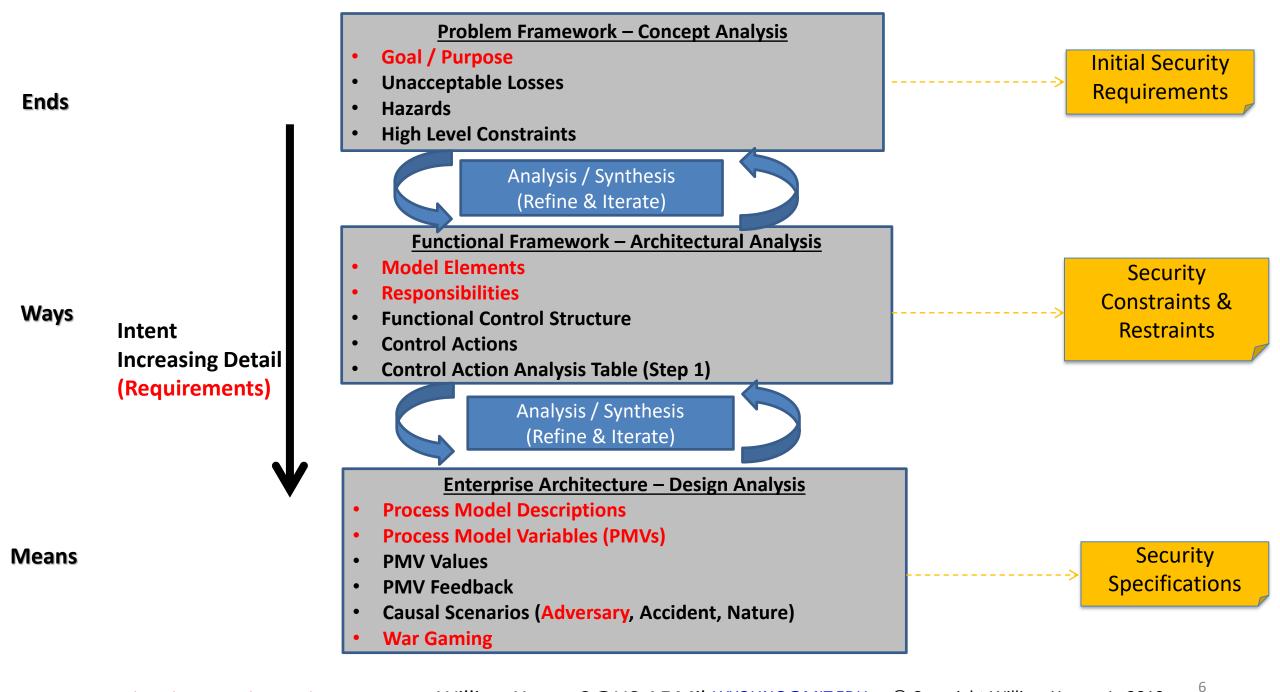
The views expressed in this presentation are are those of the presenters and do not reflect the official policy or position of the United States Air Force, Department of Defense, Air Combat Command, MIT Lincoln Laboratory, Syracuse University, or the U.S. Government

Overview of the Practice Session

Session 2 (3:30 – 5:00): STPA-Sec Practice

- STPA-Sec for Security Engineering Analysis
- Concept Analysis
- Architectural Analysis
- Design Analysis
- User Q&A
- Summary and Conclusion

To Maximize the Available Time, I Will Assume Basic Familiarity With STAMP, STPA an Will Leverage John Thomas's Example from this Morning


Rules of Engagement

- Extends aspects of Dr John Thomas's morning STPA tutorial
 - Won't cover the things he discussed
 - Will Identify security-related differences and additions
 - Will offer my techniques in a few areas
- Generally follows STPA Handbook guidelines
- Available time won't allow for deep dive, but will have time over the next two days to discuss and answer detailed questions
- This is notional example and greatly simplified to fit within the time allotted
- Brevity prevents replication of the group learning that normally occurs
- Can't simulate the iterative nature and the rich conversations that occur
- I want to save time at the end to address specific user questions encountered during realworld applications

We are Summarizing 40+ Hours of Instruction into 90 Minutes...We Will Only Hit Wavetops

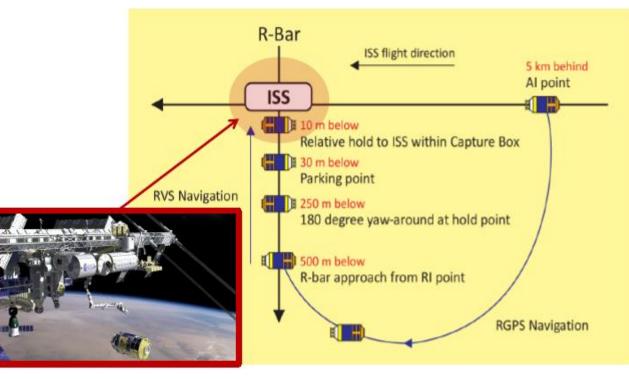
STPA-Sec For Security Engineering Analysis

Satellite System Example Based on John Thomas Example Used in Earlier STPA Tutorial (Used With Dr Thomas' Permission) and the Paper "A Top Down Approach for Eliciting Systems Security Requirements for a Notional Satellite System" by Mailoux, Span, Mills and Young

Security-related material or techniques William.Young.3@US.AF.Mil WYOUNG@MIT.EDU © Copyright William Young, Jr, 2019

Notional Spacecraft Through a Security Lens

From John Thomas' Example this Morning


- Unmanned cargo transfer spacecraft
- Launched aboard rocket
- Rendezvous with International Space Station (ISS)
- Docks with ISS to deliver supplies
- Undocks and Returns to Earth

Additional Factors

- Proximity operations involve ISS (including crew), and ground stations
- Spacecraft employs proprietary software that company has invested significant IRAD to develop and patent
- System is commercially owned, operated, and maintained
- Company is liable for damage to supplies while enroute and for mission impact if supplies not delivered

Additions to morning STPA Tutorial Scenario

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil <u>WYOUNG@MIT.EDU</u> © Copyright William Young, Jr, 2019

7

Problem Framework: Concept Analysis

Determining Initial Security Requirements

Concept Analysis Overview

	STPA-SEC CONCEPT ANALYSIS.			
	Step	Description		
Purpose ceptable osses zards h Level straints	1. Define the System of Interest (SOI), SOI purpose and SOI goal*	Capture the mission statement and key activities of the system: 1) A system to: (What) 2) By Means of: (How) 3) In Order to: (Why) 4) While: (Bounds)		
	2. Identify unacceptable losses*	Define high level, intolerable system outcomes to key stakeholders (e.g., loss of life, injury, damage to equipment, reputation, mission, etc.).		
	3. Identify hazards	Identify system states that when coupled with worst case conditions lead to an unacceptable loss.		
	4. Develop system security constraints*	Develop mission-informed security constraints that prevent the system from entering hazardous states. These constraints are synonymous with early safety, security, and resiliency functional requirements.		

* Security-related addition, modification, or technique

Goal /

Unacce Los

Haza

High Const

Big Picture: Synthesize (Frame) Security Problem

- Sets the foundation for the security analysis
- Must ID all relevant stakeholders

Goal / Purpose

Unacceptable

Losses

Hazards

High Level Constraints

- Must understand how product / service fits into organizational strategy
- Surface key assumptions (and dependencies)
- Satisfies key aspects of Business or Mission Analysis (BMA) in ISO/IEEE/IEC 15288
- Examine required functionality from a security perspective

"Many systems fail because their designers protect the wrong things, or protect the right things in the wrong way" – Ross Anderson in *Security Engineering*

Define System Purpose and Goal

"A system to do {What = Purpose}

by means of {How = Method}

in order to contribute to {Why = Goals}

while {Constraints, Restraints}

Sidebar

The Story of "Bob"

Specify a gap between "as is" and "to be"

that will be addressed through a process (e.g. a transformation of some type)

Military parallel is Operational Design (applied Operational Art) as captured in Joint Pub 5-0

Iterative Process is Challenging, but Generates Rich Conversations in Practice (e.g. USAF MLV)

Define System Purpose and Goal

From John Thomas' Example this Morning

- Unmanned cargo transfer spacecraft
- Launched aboard rocket
- Rendezvous with International Space Station (ISS)
 - Docks with ISS to deliver supplies
- Undocks and Returns to Earth

Additional Factors

Goal / Purpose

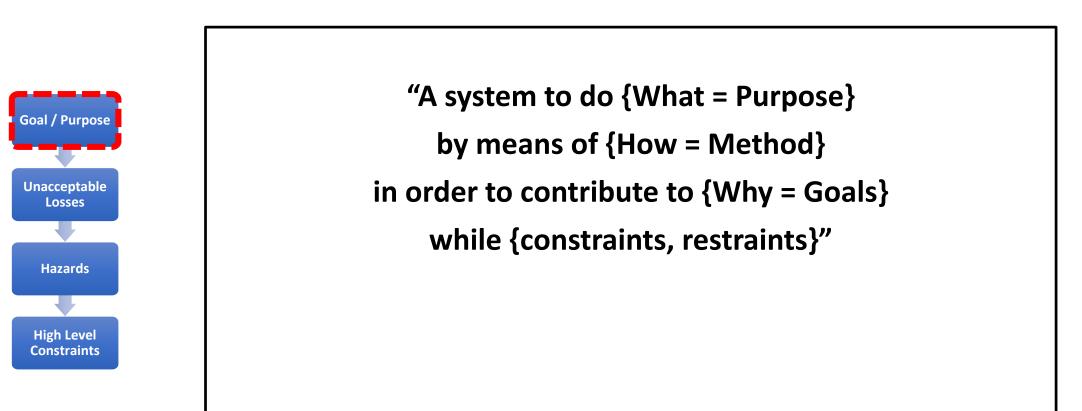
Unacceptable

Losses

Hazards

High Level

Constraints


Format

"A system to do {What = Purpose} by means of {How = Method} in order to contribute to {Why = Goals} while {constraints, restraints}

- Proximity operations involve ISS (including crew), and ground stations
- Spacecraft employs proprietary software that company has invested significant IRAD to develop and patent
- System is commercially owned, operated, and maintained
- Company is liable for damage to supplies while enroute and for mission impact if supplies not delivered

What Might Be a Possible Solution from the Spacecraft Example?

Spacecraft Example

Spacecraft Example– Potential Solution

A system to autonomously resupply ISS by means of launching, navigating, docking, and undocking a space vehicle in order to **support the ongoing ISS mission and research** while maintaining profitable operations, minimizing risk to ISS/cargo, and improving the company's position and branding as a responsible world leader in space technology.

Goal / Purpose

Unacceptable Losses

Hazards

High Level Constraints

This is one Solution, But There Others

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil WYOUNG@MIT.EDU © Copyright William Young, Jr, 2019

Adding Security-Related Unacceptable Losses

- "Unacceptable Losses" and "Accidents" are the same thing
- Many of the security losses will overlap with safety accidents
- Security perspective may add nuance to a previous safety perspective
- Security perspective may also highlight important safety / security trades
- Focus on alternative "system" uses

Goal / Purpose

Unacceptable Losses

Hazards

High Level Constraints

- Focus on security concerns of non-traditional stakeholders
- Outcomes and final conditions, not failures

Simply Clarifying Unacceptable Losses May Provide a Significant Boost in Security Effectiveness!

15

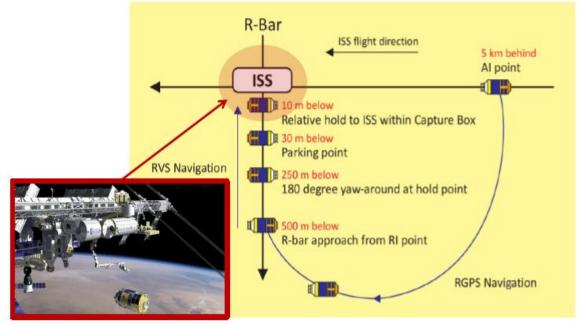
Spacecraft Losses

- Unacceptable Losses (From Earlier Today)
- A-1: HTV collides with ISS

Goal / Purpose

Unacceptable

Losses


Hazards

High Level

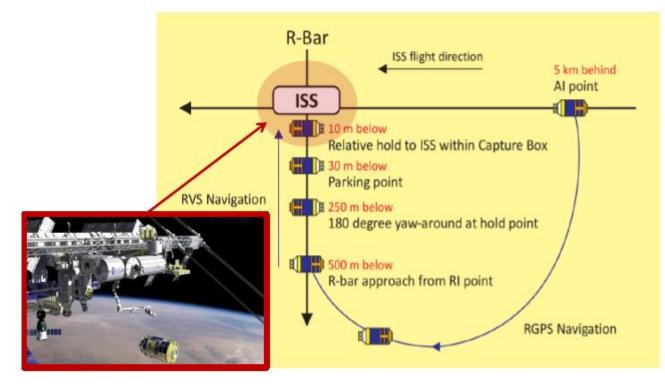
Constraints

• A-2: Loss of delivery mission

- Unacceptable Losses (Modified From Earlier Today)
- L-1: Loss of Vehicle or ISS
- L-2: Significant Damage to ISS or Vehicle
- L-3: Loss of Resupply Payload

Are these Safety or Security-Related Losses?

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil <u>WYOUNG@MIT.EDU</u> © Copyright William Young, Jr, 2019


Spacecraft Unacceptable Losses

Unacceptable Losses

- L-1: Loss of Vehicle or ISS
- L-2: Significant Damage to ISS or Vehicle

L-3: Loss of Resupply Payload

Goal / Purpose Unacceptable Losses Hazards High Level Constraints

Are there other unacceptable losses Related to Security? (Take a Few Minutes to Discuss)

Expanded (Security-related) Spacecraft Unacceptable Losses

Unacceptable Losses

Goal / Purpose

Unacceptable

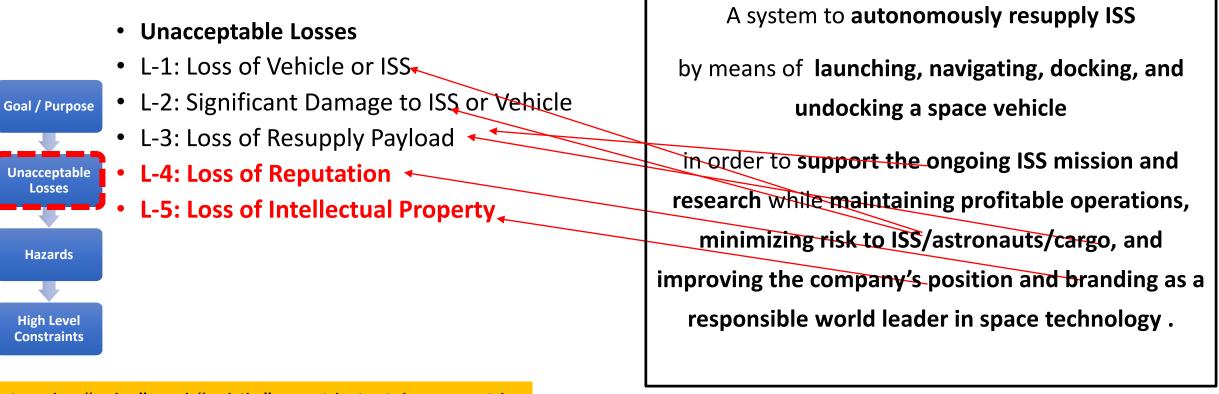
Losses

Hazards

High Level

Constraints

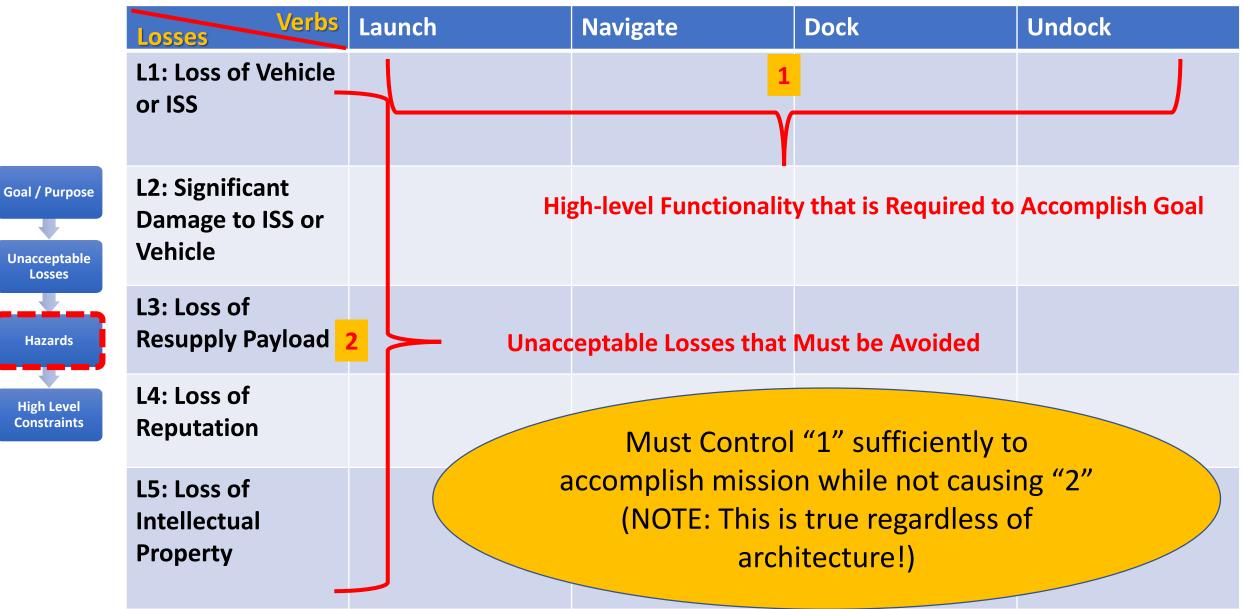
- L-1: Loss of Vehicle or ISS
- L-2: Significant Damage to ISS or Vehicle
- L-3: Loss of Resupply Payload
- L-4: Loss of Reputation
- L-5: Loss of Intellectual Property

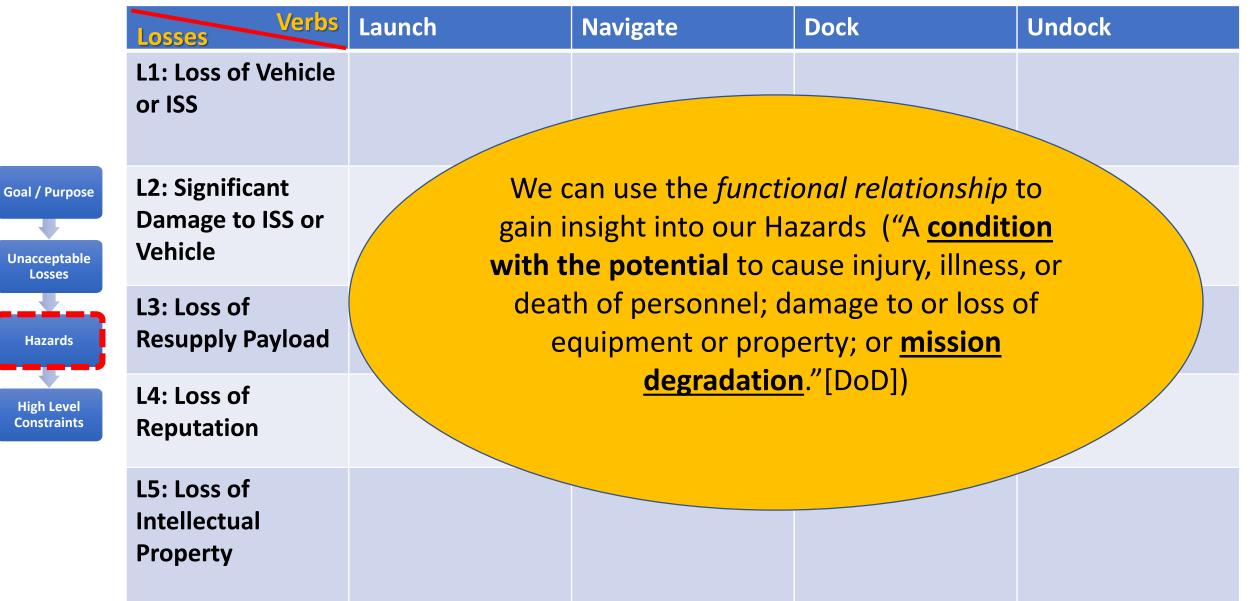

A system to autonomously resupply ISS

by means of launching, navigating, docking, and undocking a space vehicle

in order to support the ongoing ISS mission and research while maintaining profitable operations, minimizing risk to ISS/cargo, and improving the company's position and branding as a responsible world leader in space technology.

Are there other unacceptable losses Related to Security? (Take a Few Minutes to Discuss)


Expanded Spacecraft Unacceptable Losses



Tip: The "Why" and "While" provide insights to guide Unacceptable Losses

Unacceptable Losses Are Traceable back to the Problem Statement

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil <u>WYOUNG@MIT.EDU</u> © Copyright William Young, Jr, 2019

	Verbs Losses	Launch	Navigate	Dock	Undock
	L1: Loss of Vehicle or ISS	Improper launch functionality may place vehicle in unrecoverable orbit	Navigation to wrong point or at wrong time can lead to loss of vehicle	Excessive closure during docking can cause damage to ISS or ship	Inadvertent undocking may compromise vehicle or ISS
Goal / Purpose Unacceptable Losses Hazards High Level Constraints	L2: Significant Damage to ISS or Vehicle	Excessive launch forces may damage vehicle or cargo	Navigation through space radiation fields may damage vehicle	Excessive closure during docking can cause damage to ISS or ship	Inadvertent undocking may compromise vehicle or ISS
	L3: Loss of Resupply Payload	Excessive forces during launch may damage payload	Excessive forces on payload during enroute portion	Docking attempted when ISS not ready or docking functionality applied when not docking	Undocking functionality applied before desired
	L4: Loss of Reputation	Failed launch attempt or vehicle destruction	Losing vehicle enroute	Vehicle colliding with ISS when under control of company	Vehicle undocking with ISS when commanded
	L5: Loss of Intellectual Property	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data 22

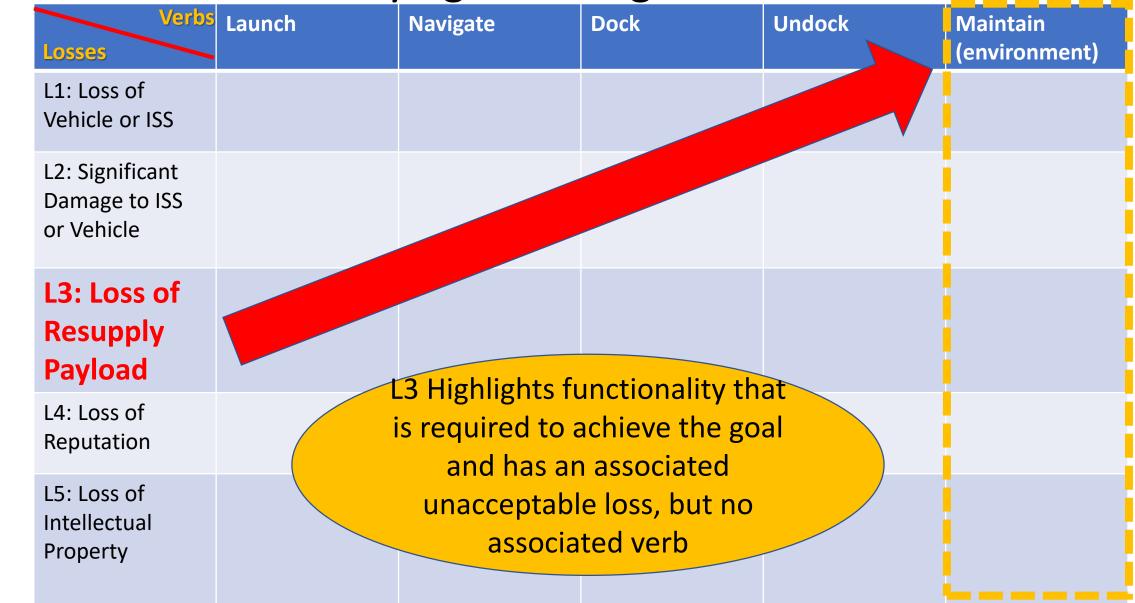
	Losses Verbs	Launch	Navigate	Dock	Undock	
Goal / Purpose Unacceptable Losses Hazards High Level Constraints	L1: Loss of Vehicle or ISS	Improper launch functionality may place vehicle in unrecoverable orbit	Navigation to wrong point or at wrong time can lead to loss of vehicle	Excessive closure during docking can cause damage to ISS or ship	Inadvertent undocking may compromise vehicle or ISS	
	L2: Significant Damage to ISS or Vehicle	Excessive launch forces may damage vehicle or cargo	Navigation through space radiation fields may damage vehicle	Excessive closure during docking can cause damage to ISS or ship	Inadvertent undocking may compromise vehicle or ISS	
	L3: Loss of Resupply Payload	Excessive for Te launch man payload for man	Undocking functionality applied before desired			
	L4: Loss of Reputation	Failed launch or vehicle destruction	propriety da	Vehicle undocking with ISS when commanded		
	L5: Loss of Intellectual Property	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data 23	

	Verbs Losses	Launch	Navigate	Dock	Undock		
	L1: Loss of Vehicle or ISS	Improper launch functionality may place vehicle in unrecoverable orbit	Navigation to wrong point or at wrong time can lead to loss of vehicle	Excessive closure during docking can cause damage to ISS or ship	Inadvertent undocking may compromise vehicle or ISS		
Goal / Purpose Unacceptable Losses Hazards High Level Constraints	L2: Significant Damage to ISS or Vehicle	Excessive launch forces may damage vehicle or cargo	Navigation through space radiation fields may damage vehicle	Excessive closure during docking can cause damage to ISS or ship	Inadvertent undocking may compromise vehicle or ISS		
	L3: Loss of Resupply Payload	Excessive forces during launch may damage payload	nch may damage Vload ed launch attemp Constrained within limits while				
	L4: Loss of Reputation	Failed launch attemp or vehicle destruction					
	L5: Loss of Intellectual Property	Monitored telemetry may reveal proprietary data	Monitored telemeny may reveal proprietary data	may reveal proprietary data	Monitored telemetry may reveal proprietary data 24		

Identifying a Missing Verb

	Verbs Losses	Launch	Navigate	Dock	Undock
	L1: Loss of Vehicle or ISS	Improper launch functionality may place vehicle in unrecoverable	Inadvertent undocking may compromise vehicle or ISS		
Goal / Purpose Unacceptable Losses Hazards High Level Constraints	L2: Significant Damage to ISS or Vehicle	Excessiv mav cz We	tent may		
	L3: Loss of Resupply Payload	ра	ore		
	L4: Loss of Reputation	Failed laun or vehicle destru			with ISS when commanded
	L5: Loss of Intellectual Property	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data	Monitored telemetry may reveal proprietary data 25

Identifying a Missing Verb


Goal / Purpose

Unacceptable Losses

Hazards

High Level

Constraints

Hazards

What system state or set of conditions together with a set of worst-case environmental conditions will lead to a loss? (Just like this Morning's STPA Tutorial)

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil WYOUNG@MIT.EDU © Copyright William Young, Jr, 2019

Hazards

High Level Constraints

Hazards to Losses Cross Walk

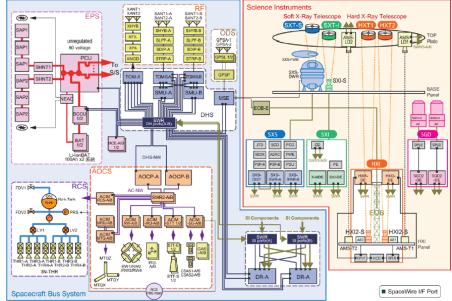
				Losses			
Goal / Purpose Unacceptable Losses Hazards High Level Constraints			L1: Loss of Vehicle or ISS	L-2: Significant Damage to ISS or Vehicle	L-3: Loss of Resupply Payload	L-4: Loss of Reputation	L-5: Loss of Intellectual Property
	Hazards	H1: H1: Failure to Maintain Safe Separation between the Space Vehicle and the ISS	Х	Х	Х	х	
		H2: Exceed Safe Closure Rate Between Space Vehicle and ISS	Х	Х	Х		
	Ϊ	H3 : Payload Environment not Maintained Within Operational Limits			Х		
		H4: Launch parameter limits exceeded	Х	Х	Х		
		H5: Proprietary data disclosed to unauthorized entity				Х	Х

Develop High-level System Security Constraints

	Hazard	System Constraint	
Goal / Purpose	H1: H1: Failure to Maintain Safe Separation between the Space Vehicle and the ISS		
Unacceptable Losses	H2: Exceed Safe Closure Rate Between Space Vehicle and ISS	C2: System must maintain safe closure rate with ISS during docking and undocking	
Hazards	H3: Payload Environment not Maintained Within Operational Limits		
High Level Constraints	H4: Launch parameter limits exceeded		
	H5: Proprietary data disclosed to unauthorized entity		

We Will Leverage ABORT functionality to Enforce this Constraint

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil WYOUNG@MIT.EDU © Copyright William Young, Jr, 2019


Functional Framework: Architectural Analysis

Developing Security Constraints and Restraints

Spacecraft Example– Architectural Analysis Overview

Need Functional Equivalent

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil WYOUNG@MIT.EDU ©

Architectural Analysis Overview

	STPA-SEC ARCHITECTURAL ANALYSIS.			
Model Elements	Step	Description		
Responsibilities	1. Identify model elements	Identify actor(s), controller(s), and controlled process(es) for the SoI at the desired level of abstraction.		
Functional Control Structure	2. Identify each elements' responsibilities	Capture the description and actions planned to be taken for the model elements identified.		
Control Actions	3. Build Initial Functional Control Structure to Model control relationships	Organize the model elements to pictorial show the relationships between elements in a functional control structure.		
Control Action Analysis Table (Step 1)	4. Identify Control Actions (CA)	Captures (in verb form) the actions necessary for each element to execute their responsibilities.		
	5. Complete the CA analysis table	The CA analysis table systematically enumerates which hazards are caused by each CA identified in step 4.		

Spacecraft– Model Elements

Problem Space (Function)

A system to **autonomously resupply ISS**

Model Elements

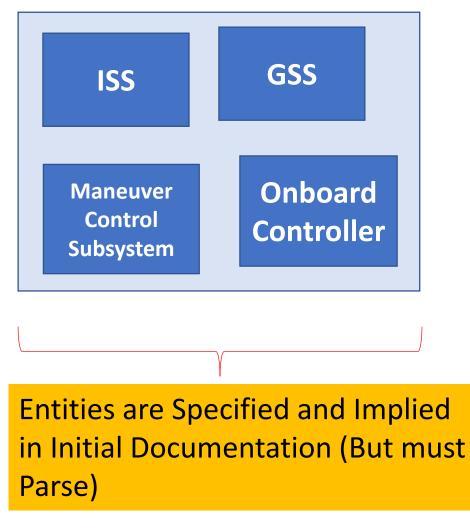
Responsibilities

Functional Control Structure

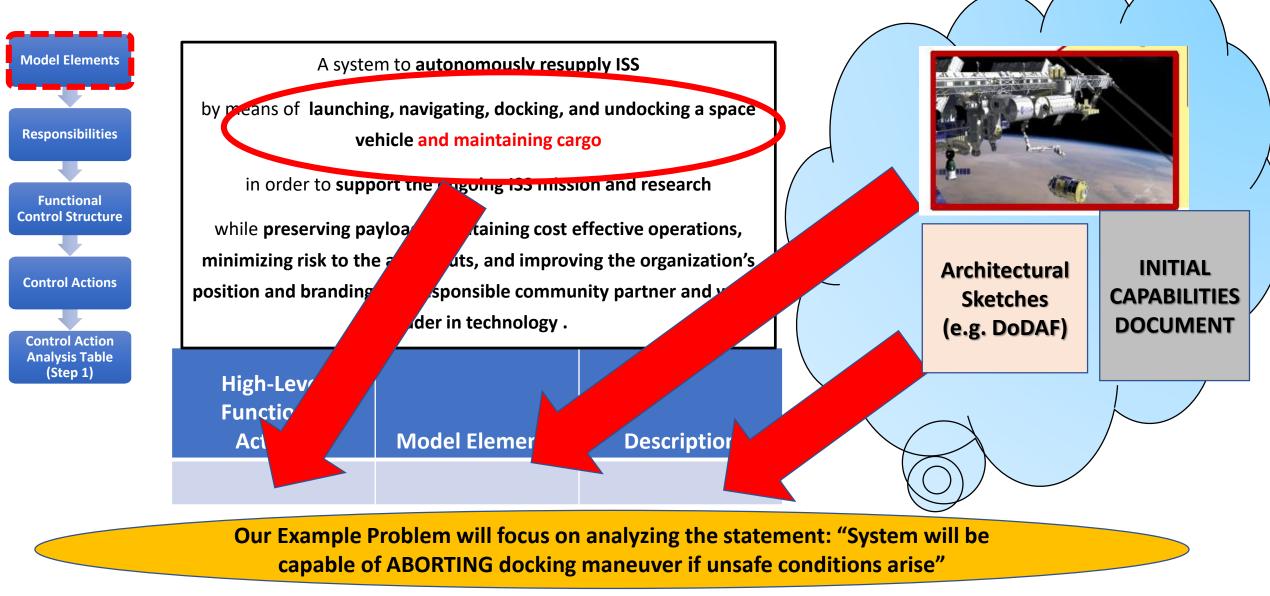
Control Actions

Control Action Analysis Table

(Step 1)


by means of launching, navigating, docking, and undocking a space vehicle and maintaining cargo

in order to support the ongoing ISS mission and research


while preserving payload, maintaining cost effective operations, minimizing risk to the astronauts, and improving the organization's position and branding as a responsible community partner and world leader in technology.

Developed in Initial Problem Framing

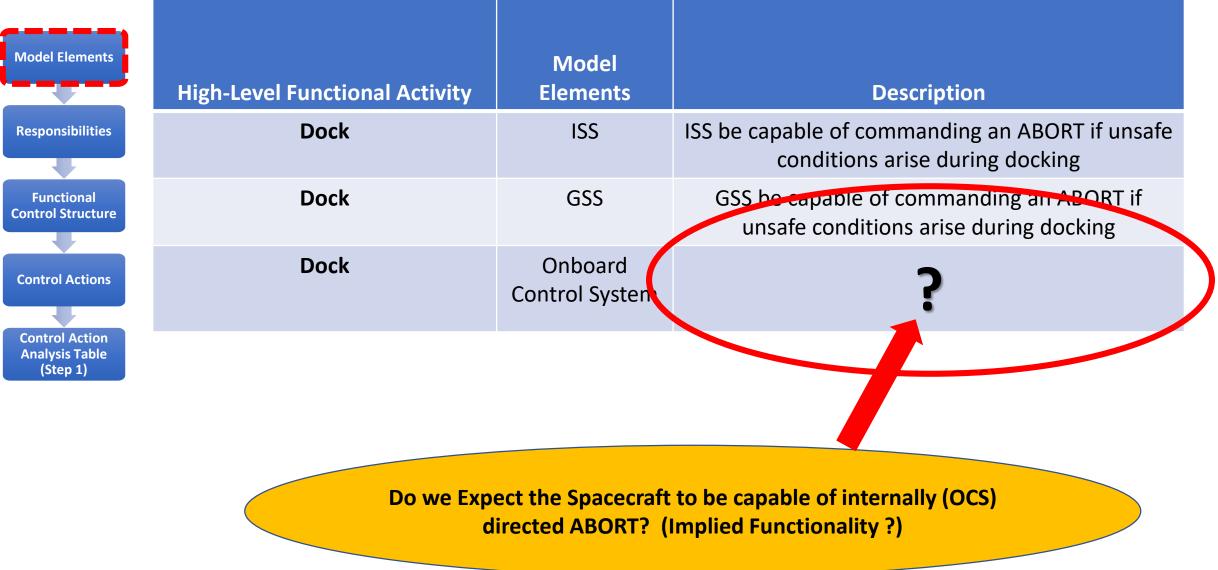
Solution Space (Form)

Spacecraft– Model Elements

Adapted from Dr Thomas' STPA Tutorial William.Young.3@US.AF.Mil WYOUNG@MIT.EDU © Copyright William Young, Jr, 2019

Entity Activity Diagram

Goal / Purpose

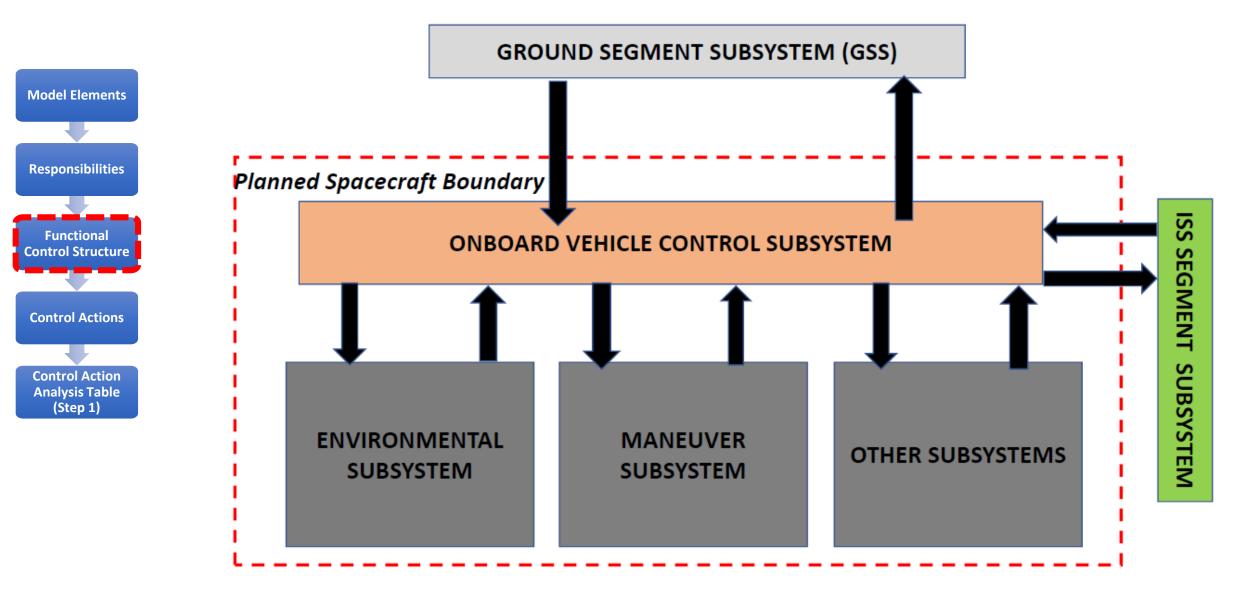

Unacceptable Losses

Hazards

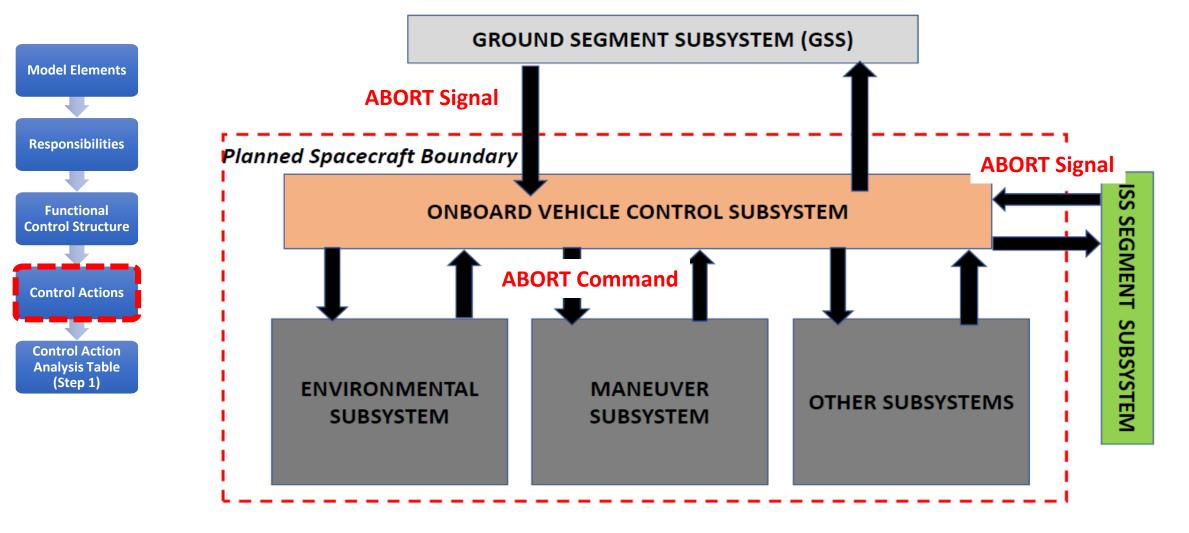
High Level Constraints

Verbs Entity	Launch	Navigate	Dock	Undock	Maintain (environment)			
ISS Segment								
GSS Segment			Identif	v data (Parse)				
Onboard Vehicle Control System			Identify data (Parse) documents and place specified and implied responsibilities for the entities					
Maneuver Subsystem								
Environmental control subsystem			inside the various boxes					
Other Subsystems								

Spacecraft– Model Elements


Spacecraft– Model Elements

Model Elements			
	High-Level Functional Activity	Model Elements	Description
Responsibilities	Dock	ISS	GSS be capable of commanding an ABORT if unsafe conditions arise during docking
Functional Control Structure	Dock	GSS	GSS be capable of commanding an ABORT if unsafe conditions arise during docking
Control Actions Control Action Analysis Table (Step 1)	Dock	Onboard Control System	OCS receive (encrypted) ABORT when issued by ISS or GSS, decrypt (if required), terminate unsafe maneuver, command Attitude Control System to return vehicle to a safe distance from ISS and safe operational parameters. OCS will be capable of automatically sensing and commanding the Attitude Control System to ABORT docking maneuver if unsafe conditions arise during docking


Spacecraft– Responsibilities

Model Elements	Key Activity: D	ocking		
	Element	Responsibility Description	GROUND SEGMENT SUBSYSTEM (GSS)	
	Ground	Initiate process		
Responsibilities	Segment	 <u>Send ABORT signal (encrypt?)</u> 	Planned Spacecraft Boundary	
		<u>Monitor progress</u>		
Functional	ISS Segment	<u>Monitor progress</u>		
Control Structure		 Manually Intervene if required 		
	Onboard	<u>Receive ABORT signal</u>		
	Control System	<u>Command ABORT to ACS</u>		
Control Actions		 Command ABORT if required and not 		
		otherwise commanded	SUBSYSTEM SUBSYSTEM OTHER SUBSYSTEMS	
Control Action Analysis Table		<u>Decrypt?</u>		
(Step 1)	Maneuver			
	Subsystem			
	Environmental			
	Subsystem			

Spacecraft– Control Structure

Spacecraft– HCAs (Unsafe / Unsecure)

HCA - Hazardous Control Action

Spacecraft– HCAs (Unsafe / Unsecure)

	Control Action	Not providing	Providing causes	Incorrect Timing or	Stopped too soon
el Elements		causes hazard	hazard	Order	or applied too lor
	CA1: ABORT	OCS not providing	OCS providing	OCS providing	OCS providing
onsibilities		ABORT command	ABORT command	ABORT command	ABORT command
		is hazardous when	is hazardous when	too late is	for too short a
nctional		spacecraft closure	command places	hazardous when	period is
ol Structure		is outside planned	vehicle outside	corrective	hazardous when
		parameters in	safe operating	measures allow	corrections are n
rol Actions		close proximity to	envelope [H-1, H-	insufficient time to	applied long
		ISS [H-1, H-2]	2]	prevent collision	enough to preve
rol Action				[H-1, H-2]	collision [H-1, H
lysis Table Step 1)		L	•		•

HCA - Hazardous Control Action

Adapted from Dr Thomas' STPA Tutorial

William.Young.3@US.AF.Mil <u>WYOUNG@MIT.EDU</u>

Enterprise Architecture: Design Analysis

Establishing Initial Security Specifications

Design Analysis Overview

Process Model Descriptions				
		STPA-Sec Design Analysis.		
Process Model Variables (PMV)	Step	Description		
PMV Values	1. Develop process model descriptions	Describes the decision logic ("in plain English") for executing a given CA.		
PMV Feedback	2. Identify Process Model Variables (PMV)	PMVs are measurable indicators of the conditions that trigger a CA.		
Causal Scenarios	3. Specify PMV values	PMV values are all the possible values a PMV can be assigned both acceptable and hazardous.		
War Gaming	4. Identify PMV sensors	Identifies which sensors provide PMV values to the actors and controller for decision making.		
	5. Develop causal scenarios	Brainstorm how a specific implementation of the system may be compromised. Identifies critical CAs and validates the thoroughness of the model, CAs, and constraints.		

Developing Process Model Descriptions

Process Model Descriptions
Process Model Variables (PMV)
PMV Values
PMV Feedback
Causal Scenarios
War Gaming

Element: Onboard Control System

<u>**Responsibilities**</u>: Receive (encrypted) ABORT when issued by ISS or GSS, decrypt (if required), terminate unsafe maneuver, command Attitude Control System to return vehicle to a safe distance from ISS and safe operational parameters. OCS will be capable of automatically sensing and commanding the Attitude Control System to ABORT docking maneuver if unsafe conditions arise

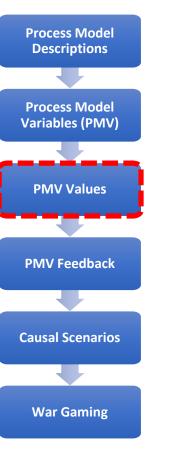
	Control Actions	Key Activity	Process Model Description / Decision Logic
os	ABORT	Docking	Issue ABORT Signal when{context}
			Issue ABORT Signal when{context}
			Issue ABORT Signal when{context}

Developing Process Model Descriptions

Process Model	E
Descriptions	R
	re
Process Model Variables (PMV)	Ve
	Ca
PMV Values	A
+	С
PMV Feedback	A
	A
Causal Scenarios	
War Gaming	

Element: Onboard Control System

<u>**Responsibilities**</u>: Receive (encrypted) ABORT when issued by ISS or GSS, decrypt (if required), terminate unsafe maneuver, command Attitude Control System to return vehicle to a safe distance from ISS and safe operational parameters. OCS will be capable of automatically sensing and commanding the Attitude Control System to ABORT docking maneuver if unsafe conditions arise

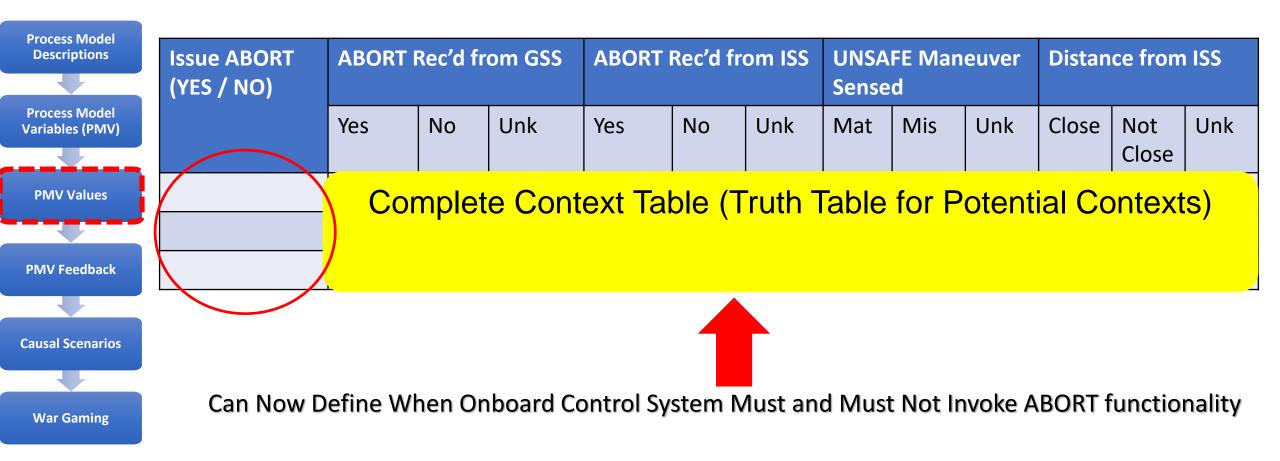

Control Actions	Key Activity	Process Model Description / Decision Logic
ABORT	Docking	Issue ABORT when <u>ABORT SIGNAL RECEIVED</u> <u>FROM GSS</u> and <u>Vehicle is X Distance from ISS</u>
		Issue ABORT when <u>ABORT SIGNAL RECEIVED</u> <u>FROM ISS</u> and <u>Vehicle is X Distance from ISS</u>
		Issue ABORT Signal when <u>UNSAFE MANEUVER</u> <u>SENSED</u> and <u>Vehicle is X Distance from ISS</u>

Identify Process Model Variables

Element: Onboard Control System

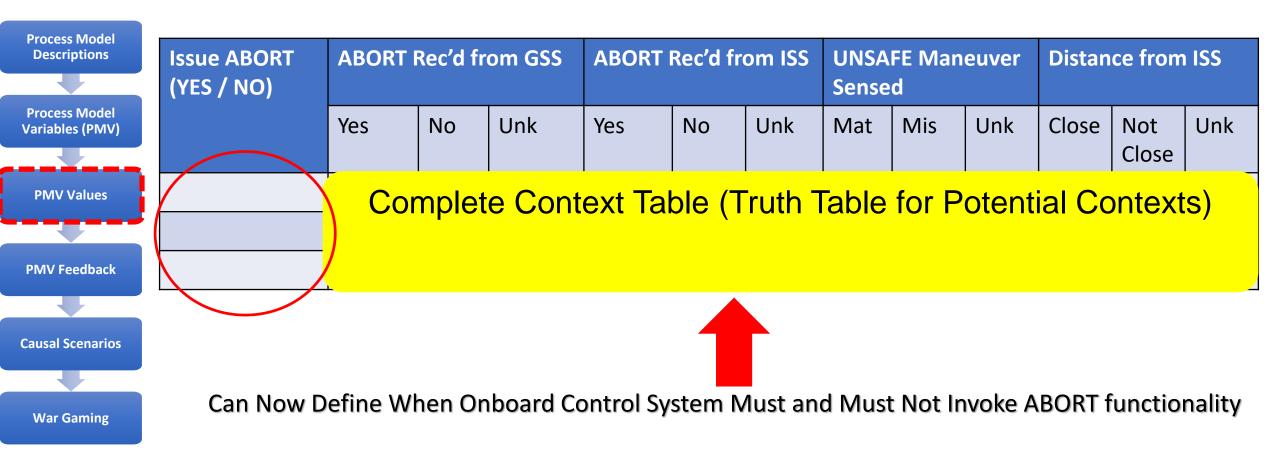
Process Model Descriptions Process Model Variables (PMV)	maneuver, com parameters. OC	Responsibilities: Receive (encrypted) ABORT when issued by ISS or GSS, decrypt (if required), terminate unsafe maneuver, command Attitude Control System to return vehicle to a safe distance from ISS and safe operational parameters. OCS will be capable of automatically sensing and commanding the Attitude Control System to ABORT docking maneuver if unsafe conditions arise			
PMV Values	Control Actions	Key Activity	Process Model Description / Decision Logic	Process Model Variables	
PMV Feedback Causal Scenarios	ABORT	Docking	Issue ABORT when <u>ABORT SIGNAL</u> <u>RECEIVED FROM GSS</u> and <u>Vehicle</u> is X Distance from ISS	 ABORT Signal Received from GSS Distance from ISS 	
War Gaming			Issue ABORT when <u>ABORT SIGNAL</u> <u>RECEIVED FROM ISS</u> and <u>Vehicle is</u> <u>X Distance from ISS</u>	 ABORT Signal Received from ISS Distance from ISS 	
			Issue ABORT when <u>UNSAFE</u> <u>MANEUVER SENSED</u> and <u>Vehicle is</u> <u>X Distance from ISS</u>	 Unsafe Maneuver Sensed Distance from ISS 	

Specify Process Model Variable Values

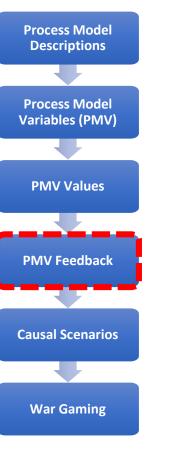


- ABORT Signal Received From GSS
 - Yes
 - No
 - Unknown
- ABORT Signal Received From ISS
 - Yes
 - No
 - Unknown

- Unsafe Maneuver Sensed
 - Match
 - Mismatch
 - Unknown
- Distance from ISS
 - Close
 - Not Close
 - Unknown


How Should We Initially Specify the Values for "Distance to ISS"?

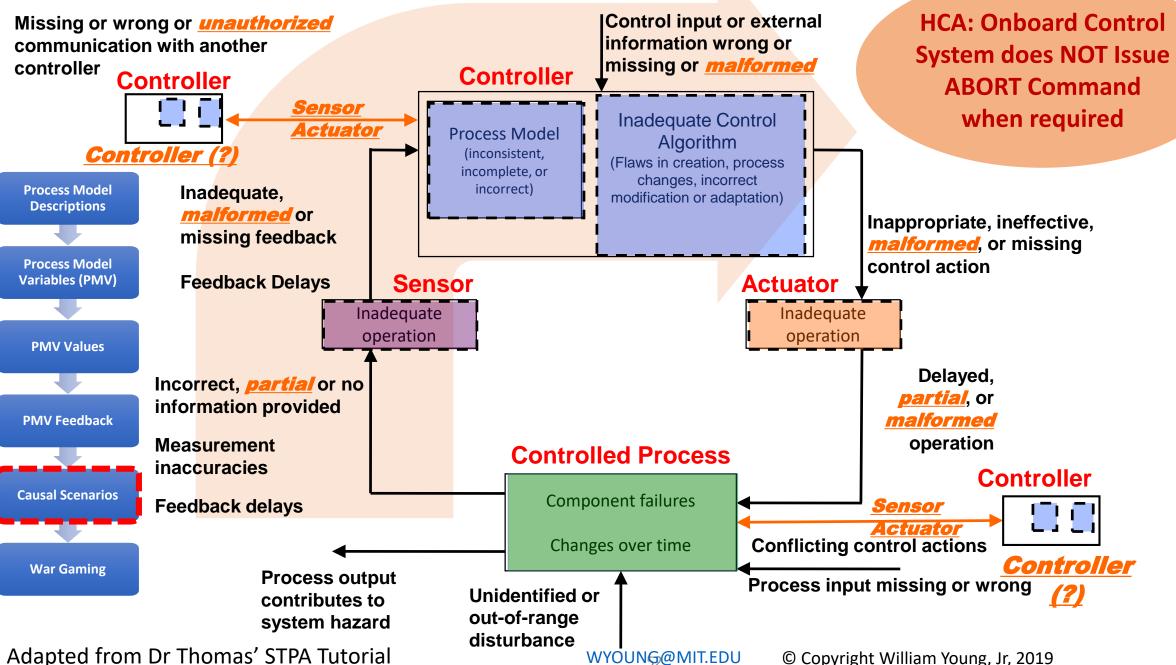
Specify Process Model Variable Values


Entire Context Table Can Be Captured in Leveson's SpecTRM-RL Tables

Specify Process Model Variable Values

SpecTRM-RL Tables are Testable Software Specifications

Identify Process Model Variable Sensor Feedback


- Establish required feedback for each PMV
- How will each value be determined?
 - ABORT Command Received From GSS, ISS
 - Distance from ISS
 - Unsafe maneuver sensed
- Easily catch missing feedback in documents

Identifying Scenarios that Lead to Hazardous Control Actions

Process Model Descriptions **Process Model** Variables (PMV) **PMV Values PMV Feedback Causal Scenarios** War Gaming

- Scenarios should be used to facilitate deeper insights and understanding, they are not a checklist
- Scenarios provide an opportunity to engage technical experts and ask key questions necessary to support improved requirements
- Scenarios form a connected narrative to understand and explain interactions across the system (and set appropriate requirements)
- Scenarios should provide useful insight or generate additional questions for deeper debate and discussion
 - Scenarios such as "denial of service attack prevents controller from issuing ABORT command" aren't really as useful as "controller doesn't issues ABORT command when vehicle exceeds safe closure rate because ISS and GSS disagreed on need to ABORT."

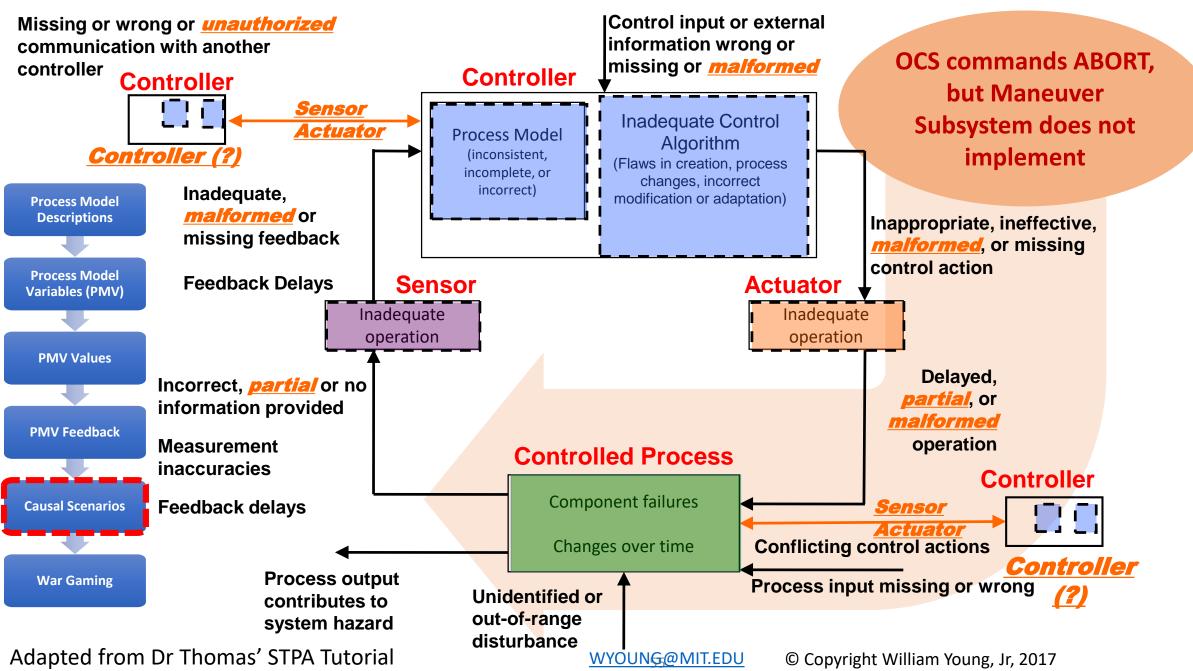
Potential causes of HCAs

Scenario Discussion

Process Model Descriptions	HCA: Onboard Control System (OCS) Does Not Command ABORT to Maneuver Subsytem after receiving ABORT signal from ISS and in close proximity BECAUSE SCENARIO			
Process Model Variables (PMV)	Scenario	Associated Causal Factors	Rationale/Notes	
PMV Values	GSS did not issue or confirm the command.			
PMV Feedback				
Causal Scenarios				
War Gaming				

Scenario Discussion

Process Model Descriptions	-	tem (OCS) Does Not Command ABORT to Maneuver BORT signal from ISS and in close proximity BECAUSE		
Process Model Variables (PMV)	Scenario	Associated Causal Factors	Rationale/Notes	
PMV Values PMV Feedback Causal Scenarios War Gaming	GSS did not issue or confirm the command.	 Malformed signal from GSS Partial signal from GSS Missing signal from GSS Inconsistent process model 	Malicious logic on OCS reports false/delayed/malformed information. Malicious logic on computer modifies process model variable to indicate that ISS is NOT in close proximity.	


Adapted from Dr Thomas' STPA Tutorial

William.Young.3@US.AF.Mil

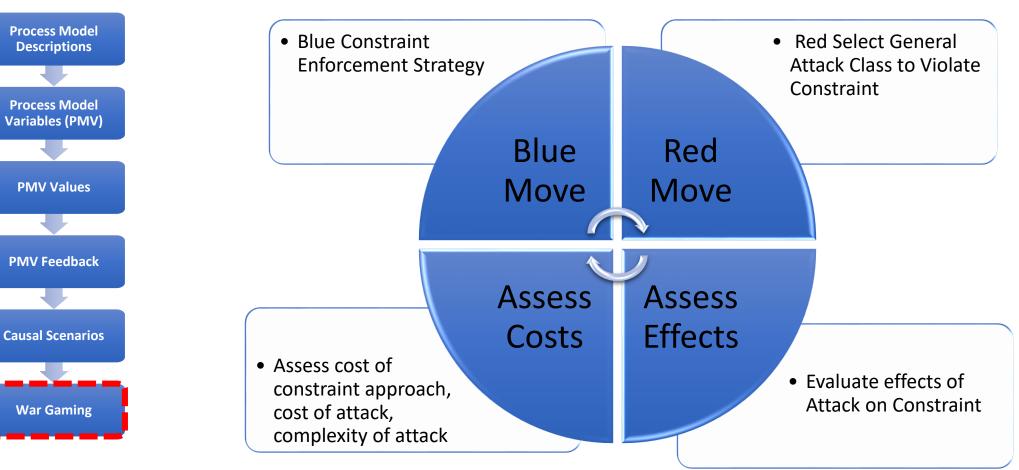
WYOUNG@MIT.EDU

<u>AIT.EDU</u> © Copyright William Young, Jr, 2019

Potential control actions not followed

Scenario Discussion

Process Model Descriptions					
	HCA: Onboard Control System provides ABORT command in close proximity to ISS after				
Process Model Variables (PMV)	receiving ABORT signal from ISS & GSS and close proximity but Maneuver Subsystem does not execute ABORT functionality BECAUSE Scenario				
	Scenario	Associated Causal Factors	Rationale/Notes		
PMV Values	Maneuver subsystem				
	prioritizes inputs from its				
PMV Feedback	internal measurements on				
	whether or not vehicle has				
Causal Scenarios	exceeded safe docking parameters. Does not				
	adequately handle a case				
War Gaming	where local sensor data is				
	incorrect AND there are still				
	good comms with ISS / GSS				


Adapted from Dr Thomas' STPA Tutorial

William.Young.3@US.AF.Mil <u>WYOUNG@MIT.EDU</u> © Copyright William Young, Jr, 2019

Scenario Discussion

Process Model Descriptions Process Model Variables (PMV)	HCA: Onboard Control System provides ABORT command in close proximity to ISS after receiving ABORT signal from ISS & GSS and close proximity but Maneuver Subsystem does not execute ABORT functionality BECAUSE Scenario		
PMV Values	Scenario	Associated Causal Factors	Rationale/Notes
Piviv Values	Maneuver subsystem prioritizes inputs from its	 Inadequate control algorithm 	Attacking sensor inside Maneuver Subsystem creates
PMV Feedback	internal measurements on	Potential conflicting control	the potential to block GSS/ISS
Causal Scenarios	whether or not vehicle has exceeded safe docking parameters. Does not adequately handle a case	between Maneuver subsystem and Onboard control system	if the ABORT logic requires onboard confirmation that the vehicle is in close proximity or outside
War Gaming	where local sensor data is incorrect AND there are still good comms with ISS / GSS		parameters.

Wargaming

Blue focus on Enforcing Constraint, Red focus on violating constraint... Goal is to "Fix" Problem Through Elimination or Mitigation Above Component Level

User Questions and Answers

Summary and Conclusions

 William.Young.3@US.AF.Mil
 WYOUNG@MIT.EDU
 © Copyright William Young, Jr, 2019

Lessons Learned Applying STPA-Sec

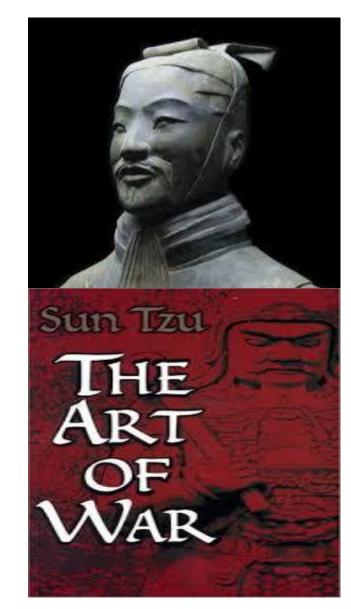
- Often heard comments:
 - "You're starting at a much higher level of abstraction..."
 - "We try to do something like that, but STPA-Sec is much more rigorous..."
 - "This requires a great deal of thought...from more than just security experts"
- Difficult or impossible to implement if system owner is unable cannot specify what system is supposed to do
- Initial expert guess on what is most important to assure tends to be too broad to be actionable
 - E.g. "Power grid"

STPA-Sec is NOT a silver bullet, but appears to enable increased rigor "Left of Design"

Safety and Security

- Goal is loss prevention and risk management
- Source is probably irrelevant and may be unknowable
- Method is the development and engineering of controls
- Focus on what we have the ability to address, not the environment
- STPA/STPA-Sec provide opportunity for a unified and integrated effort through shared control structure!

Conclusion


- Must think carefully about defining the security problem
- Perfectly solving the wrong security problem doesn't really help
- STPA-Sec provides a means to clearly link security to the broader mission or business objectives
- STPA-Sec does not replace existing security engineering methods, but enhances their effectiveness

Concluding Thoughts from Sun Tzu

The opportunity to secure ourselves against defeat lies in our own hands.

The supreme art of war is to subdue the enemy without fighting.

Strategy without tactics is the slowest route to victory. Tactics without strategy is the noise before defeat.

QUESTIONS ??