

Project CyberShip

82818284

DTU Compute

Computer Science

Department of Applied Mathematics and

Cyber-risk analysis of ship systems using STPA

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{i}$

Rishikesh Sahay, PhD Daniel A. Sepulveda, PhD

25-28 March, 2019

DTU Management Engineering Department of Management Engineering Agenda

- CyberShip problem
- Project Description
- > CyberShip Framework
- STPA Process Application
- Next Steps

Shipping Operations in the economy

Shipping Operations in the economy

0

Maersk Line: Surviving from a cyber attack

In June 2017, A.P. Moller - Maersk fell victim to a major cyber-attack caused by the NotPetya malware, which also affected many organisations globally. As a result, Maersk's operations in transport and logistics businesses were disrupted, leading to unwarranted impact.

CYBER SECURITY | 31/05/18

The attack was reportedly created huge problems to the transports about 15 per cent of global trade by containers sea and its 76 port terminals around the world ground the the organisation suffered financial losses up to USD300 restoration costs and extraordinary costs related to oper

All began when an employee in Ukraine responded to a system affected and therefore operations practically ha

The attack successfully occurred regardless the measur

MARKETS BUSINESS INVESTING TECH POLITICS CNBC TV

Shipping company Maersk says June cyberattack could cost it up to \$300 million

 Maersk has put in place "different and further protective measures" following the attack.

Annual Report 2016, the organization had clearly stated the following: "A.P. Moller - Maersk is involved in complex and wide-ranging global services and engaged in increased digitization of its businesses, making it highly dependent on well-functioning IT systems. The risk is managed through close monitoring and enhancements of cyber resilience

Cyber Attacks

Project purpose

"Propose a framework for improving the resilience in the shipping industry to cyber risks, with the ship being its main focus"

CyberShip Model

Ship Systems

Impact of Attack Traffic

Sahay, R., & Sepúlveda Estay, D. A. (2018). Work Package 2 Report - Cyber resilience for the shipping industry.

Key performance Indicators

Key Performance Indicators

Analysis of a Shipping system

Computer Science

DTU Management Engineering

Department of Management Engineering

H1	Uncontrolled manouvering of the ship
H2	Unidentified cargo items /wrong cargo data
H3	Incorrect functioning of ship components
H4	Uncontrolled transmission of data
H5	Uncontrolled data being transmitted

Analysis Example

		Control Action	UCA			
Source	Destination				Performed too long too short	Performed too early too late
			Performed with Hazard	Not Performed with Hazard	with hazard	with hazard
			when EC has provided wrong		when the requirement was for	when there are
			parameter (Velocity, Level) to	when EC is compromised	a shorter period and the pump	communication channel
			Pump.	because of human in the loop	acted for too long	congestion
			when EC receives the wrong	when EC has been	when the requirement was for	when there is a feedback
			parameters (Velocity, Level)	compromised because of	a longer period and the pump	delay between Actuator to
			from IBC	component failure	acted for too short	Ballast tank
				when EC has been		when a programmed EC action
			when Ballast tank Pump is not	compromised because of		was performed too early or
			functioning	external hacker		too late.
			When there is network failure			
EC	Ballast tank Pump	Start Pump	and the control action is not	when EC did not receive		
			received by Ballast tank	command from IBC		
			when EC is compromised			
			because of human in the loop			
			when EC has been			
			compromised because of			
			component failure			
			when EC has been			
			compromised because of			
			external hacker			
			when it was not required			

Scenarios identified in UCA Analysis

- a.- Component Failure / Cascading effects
- b.- Mis-interaction
- Network Failure
- Network Congestion (resulting delay)
- c.- Controllers Compromised by hackers
- d.- Human Mistakes (Intentional or unintentional)
- e.- Incomplete or no feedback provided for decision making

- > Explicit representation of the shipping IT system
 - Mapping of functions
 - Review of design considerations
- > Identification of design requirements
 - > Infrastructure requirements
 - Design of communications
- > Identification of crucial systems
 - > Highest #UCA detected per Hazard
 - > Highest #UCA detected per Accident
- > Design of a resilience plan
 - Redundancy systems
 - Flexible response design

Research Next Steps

- Comparison of STPA results with
 - Attack fault tree analysis
 - > Asset-based risk
- > Extending analysis to the whole ship
- Identification of design requirements (CyberShip Project)
- Analysis of an extended shipping system (shore center and several ships)
- > Training requirements for cyber-attack response

Thanks for your attention

Rishikesh Sahay, PhD, risa@dtu.dk Daniel Sepulveda, PhD, dasep@dtu.dk

CyberShip Core team From Left to right:

- Rishikesh Sahay, PhD
- Prof. Christian D. Jensen
- Prof. Harilaos Psaraftis
- Prof. Michael B. Barfod
- Daniel Sepulveda, PhD.

Research Site

http://orbit.dtu.dk/en/projects/cyber-resilience-for-the-shipping-industrycybership(666b8477-992f-4bd7-82d3-e89fddb4c87d).html