Common Mistakes Using STAMP and Its Tools

Nancy Leveson
MIT
Performing STPA

\[
\text{mistake} + \text{correction} = \text{learning}
\]
Defining System Hazards

• Most common mistake is in process of defining system hazards
 – Should only be at system level
 – Usually only a few (less than 10-15)

• Must be within the scope of the system (under system designers’ control)
Defining Hazards (2)

• System-level hazards do NOT mention components

Examples:

Correct: Loss of control of aircraft

Incorrect: Pilot does not maintain control of aircraft
 Elevators do not control pitch
 Control surface failure

• Narrows inquiry too much, start by looking at components and miss big picture (the entire system)

• To take a system view, must start at system level
 – Will trace system hazards to components later in analysis
Correct Losses and Hazards for An Example

- Loss and system hazard

 Loss: Spacecraft lost

 Hazard: Spacecraft has inadequate heat and power

 Spacecraft destroyed while landing on planet

 Spacecraft hit by space debris
Incorrect Examples

• Incorrect System Hazards

For nuclear powered spacecraft:

▪ Turbine generates less mechanical energy than needed.
 • Only one part of the nuclear power system
 • Will later draw control structure and this may be one of the UCAs

The ones below are all causes of the first (causal scenarios)

▪ Turbine does not rotate.
▪ The steam generator provides low steam flow in the turbine inlet line
▪ Broken disk
▪ Steam impaired lubrication of bearings causing wear on bearings
▪ The steam generator sends liquid along with the air to the turbine
▪ Too much wear on the bearings
 — Human error
Defining Hazards (3)

• Use of the word “failure” (turns problem into reliability)
 – “System failure” provides no useful information or goal for analysis
 • Always multiple requirements and constraints
 • Often tradeoffs and conflicts
 – Examples of incorrect hazards
 “Chemical plant fails”
 (instead) Plant releases toxic chemicals into the environment around the plant
 “Software failed”
 “Pilots failed to maintain control of aircraft”
Stopping After Building a Control Structure

• Stop after create model and don’t do analysis
• Often useful but not STPA or CAST
• For STPA, need to identify all paths to the hazard (causal scenarios)
• For CAST, need to identify inadequate controls (flawed mental models and contextual factors in the loss)
Identifying Unsafe Control Actions

• **Incorrect**: put failures (or hazards) in table
 – Doing a FMEA (FMECA) or FTA using the STPA format

• **Correct**: table entries are the context in which control action leads to a hazard

• Remember, this is a paradigm change: it will require effort on your part at first to change the way you now think and do HA
Incorrect UCA Table

<table>
<thead>
<tr>
<th>Control Action</th>
<th>Not providing causes hazard</th>
<th>Providing causes hazard</th>
<th>Too soon, too late, out of sequence</th>
<th>Stopped too soon, applied too long</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCU:</td>
<td>BSCU.1c2</td>
<td>BSCU.1d2</td>
<td>BSCU.1c2</td>
<td>BSCU.1d2</td>
</tr>
<tr>
<td>Brake command</td>
<td>Brake command not provided [H4-1, H4-5]</td>
<td>Braking commanded excessively [H4-1, H4-5]</td>
<td>Braking commanded too late [H4-1, H4-5]</td>
<td>Brake command stops too soon [H4-1, H4-5]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Braking command provided inappropriately, [H4-1, H4-2, H4-5]</td>
<td>BSCU.1c2 Brake command applied more than TBD seconds, [H4-1, H4-5]</td>
<td>BSCU.1d2 Brake command applied too long (more than TBD seconds) [H4-1]</td>
</tr>
</tbody>
</table>
5 Parts of an Unsafe Control Action (Hazard)

1. Source Controller (Pilot, PVI, Automatic Controllers)
2. Control Action
3. Type of Unsafe Control (provided, not provided, wrong timing/order, wrong duration)
4. Context in which control action is unsafe
5. Consequences (system-level hazardous behavior)

BSCU: Braking command not provided during landing roll, resulting in insufficient deceleration and potential overshoot
5 Parts of an Unsafe Control Action (Hazard)

1. **Source Controller**
2. **Control Action**
3. **Type of Unsafe Control**
4. **Context in which control action is unsafe**
5. **Consequences (system-level hazardous behavior)**

<table>
<thead>
<tr>
<th>Control Action</th>
<th>Not providing causes hazard</th>
<th>Providing causes hazard</th>
<th>Too soon, too late, out of sequence</th>
<th>Stopped too soon, applied too long</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCU.1 Brake command</td>
<td>BSCU.1a1 Brake command not provided during RTO (to V1), resulting in inability to stop within available runway length [H4-1, H4-5]</td>
<td>BSCU.1b1 Braking commanded excessively during landing roll, resulting in rapid deceleration, loss of control, occupant injury [H4-1, H4-5]</td>
<td>BSCU.1c1 Braking commanded before touchdown, resulting in tire burst, loss of control, injury, other damage [H4-1, H4-5]</td>
<td>BSCU.1d1 Brake command stops during landing roll before TBD taxi speed attained, causing reduced deceleration [H4-1, H4-5]</td>
</tr>
</tbody>
</table>
Correct UCA *(Context)* Table

<table>
<thead>
<tr>
<th>Control Action</th>
<th>Not providing causes hazard</th>
<th>Providing causes hazard</th>
<th>Too soon, too late, out of sequence</th>
<th>Stopped too soon, applied too long</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCU.1 Brake command</td>
<td>Brake command not provided during RTO (to V1), resulting in inability to stop within available runway length [H4-1, H4-5]</td>
<td>Braking commanded excessively during landing roll, resulting in rapid deceleration, loss of control, occupant injury [H4-1, H4-5]</td>
<td>Braking commanded before touchdown, resulting in tire burst, loss of control, injury, other damage [H4-1, H4-5]</td>
<td>Brake command stops during landing roll before TBD taxi speed attained, causing reduced deceleration [H4-1, H4-5]</td>
</tr>
</tbody>
</table>
Correct UCA (Context) Table

<table>
<thead>
<tr>
<th>Control Action</th>
<th>Not providing causes hazard</th>
<th>Providing causes hazard</th>
<th>Too soon, too late, out of sequence</th>
<th>Stopped too soon, applied too long</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCU:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSCU.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake command</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during RTO (to V1), [H4-1, H4-5]</td>
<td>during landing roll, [H4-1, H4-5]</td>
<td>before touchdown, [H4-1, H4-5]</td>
<td>during landing roll before TBD taxi speed attained [H4-1, H4-5]</td>
<td></td>
</tr>
<tr>
<td>BSCU.1a2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during landing roll, [H4-1, H4-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSCU.1b2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during takeoff, [H4-1, H4-2, H4-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSCU.1c2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>after touchdown, [H4-1, H4-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSCU.1d2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during landing roll [H4-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Generating Causal Scenarios

• Not going to be accomplished in a few days
 – Takes months and even years to generate scenarios using traditional hazard analysis
 – STPA is more efficient and much less costly (maybe weeks), but it will never be trivial (even with new approaches)
 – If it were trivial, then engineering design would be trivial and we can replace all engineers with computers

• Sometimes oversimplify
 – CAST: Need to understand “why” someone thought it was the right thing to do
 – STPA: Need to identify all scenarios and get enough information to eliminate or mitigate the hazard (unsafe control)
Why might software open catalyst valve when water valve not open? [Hint: Start with Process Model]
Some Reasons for Incorrect Process Model

- Previously issued an Open Water Valve command but valve did not open (jammed, failed, etc.)

- Assumed that command had been executed. Why?

 i. No feedback about effect of previous command
 (Control: put feedback in design)

 ii. Feedback not received. [could go on to determine “why” here if want]
 (Control: Assume not executed)

 iii. Feedback delayed (could go on to determine “why” if want)
 (Control: wait predetermined time and then assume not opened)

 iv. Incorrect feedback received. Why? (maybe assumed that if reached valve, it would open [design error]
 (Control: add flow meter to detect water flow through pipe)

 etc.
Improved Model
Combining STPA with Old Analysis Techniques

- A tremendous waste of resources
Trying to Apply STPA to Other Types of Models

• STPA is an analysis technique performed on a functional control structure

• Older HA techniques either do not have a model
 – Done on model in analyst’s head, e.g., FTA
 – Or done on a different type of model (HAZOP)

• We need to add new functional control models to MBSE
 – Cannot just do STPA on UML, SysML, or other architectural models (and limit to one architectural style, i.e., OOD)
 – The model and analysis go together
Information Flow Model

UAV controller:
- UAV control
- Data acquisition
- UAV maintenance

User control/information flow:
- Percieved
- Actual
Mission Planning
Communication Architecture
(task/control flow model)
UAV Physical Data Structure

STPA: UAV Functional Control Structure
AFRL MUM-T Control Structure (UxAS)

Control Actions

1. **Grant clearance**
 - Issue ground operation
 - Issue approach/departure instructions

2. **Issue mission plan**
 - Issue updates/changes

3. **Surveil a region**
 - Search for a target
 - Identify/Assess target
 - Track target
 - Aim/Fix on target
 - Fire at/Engage target
 - Send formation command
 - Send override command

4. **Takeoff**
 - Land
 - Send override command
 - Send altitude command
 - Send airspeed command
 - Start engine
 - Stop engine
 - Turn on payload
 - Turn off payload
 - Apply lost link procedure

5. **Change altitude**
 - Set throttle

Feedback

6. **Request takeoff/landing clearance**
 - Request ground clearance
 - Confirm guidance/instructions

7. **Mission Status**

8. **Visual**
 - Communication checks
 - Position Data
 - Mission Progress Updates
 - Waypoint destination
 - Time to destination

9. **Engine status**
 - Communication checks
 - Current services status + warnings
 - Mission Progress Updates
 - Mission objectives
 - Position Data
 - Aircraft hardware status
 - Waypoint destination
 - Time to destination
 - Unauthorized requests
 - Lost link successful

10. **GPS position**
 - Altitude
 - Airspeed
 - Fuel level
 - Engine status
 - Warnings/Cautions
Summary

- STAMP and tools represent a paradigm change
 - Will take some getting used to it
 - Hardest for people who have intensively used the traditional techniques
 - Easiest for system engineers and students because no “unlearning” required

- But benefits of using them are very high
 - More causal scenarios and additional types
 - Costs much less to do once learn it
 - Ability to use earlier in life cycle results in large ROI

- Will need ways to educate and integrate into organizations (e.g., facilitators, “teach the teachers”)