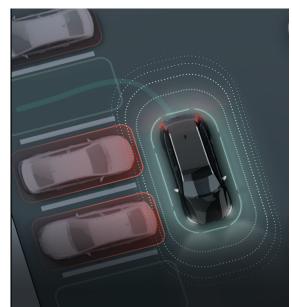
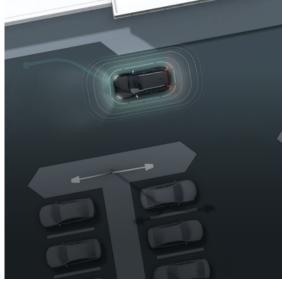


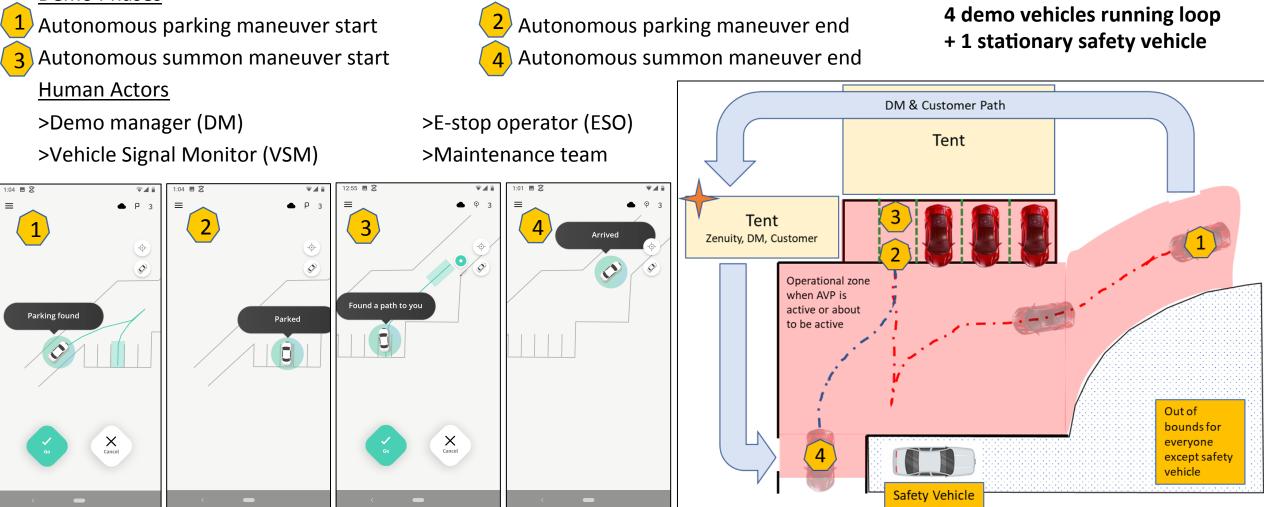
STPA Analysis of Safety Measures for Zenuity's Auto Valet Parking Demo

Amardeep Sidhu Shabin Mahadevan

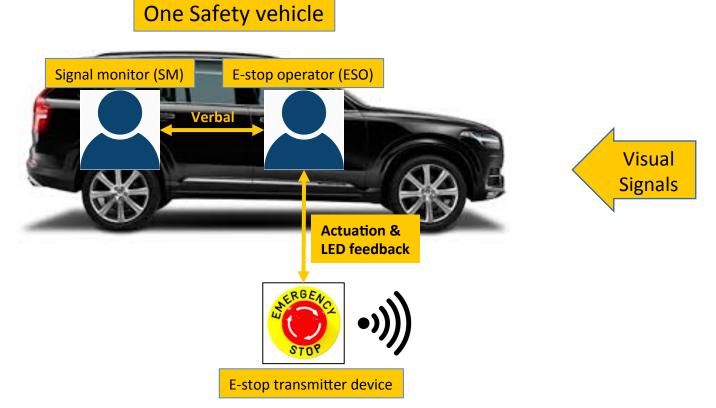

Zenuity - set up


Background

- Autonomous Valet Parking (AVP) feature
- AVP demo at Consumer Electronics Show (CES) Jan 2019


Objectives & Rationale

• Evaluate safety measures for autonomous valet parking and summon during Zenuity's AVP demo


- Informed decision on manned (safety driver) vs. driverless demo
- STPA was chosen to evaluate the safety due to:
 - Multi-agent nature of the demo
 - Complex interactions

System under study: ConOps

Demo Phases

Zooming into the E-stop system

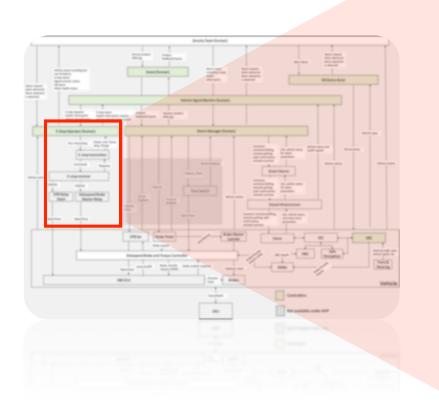
Four Demo Vehicles

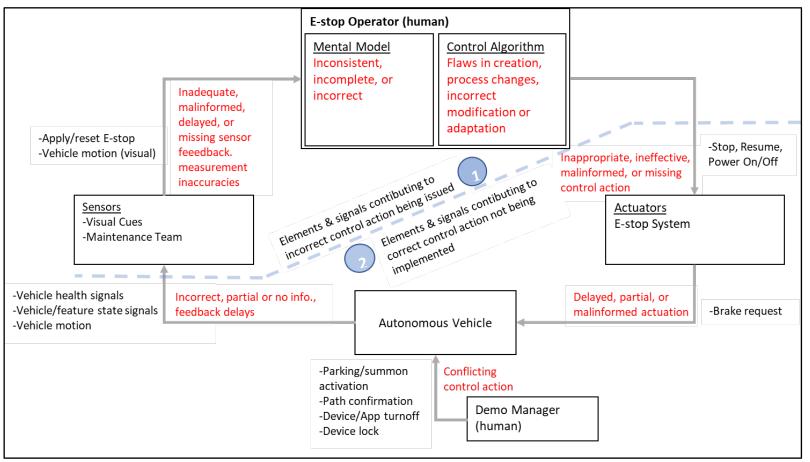
- Safety vehicle has two pairs of SM and ESO
- Each SM and ESO pair is assigned to two demo vehicles

STPA Step 1: defining purpose of the

Losses

- L-1 = AV collision with vulnerable road user (VRU)
- L-2 = AV gets damaged
- L-3 = Loss of reputation


Hazards

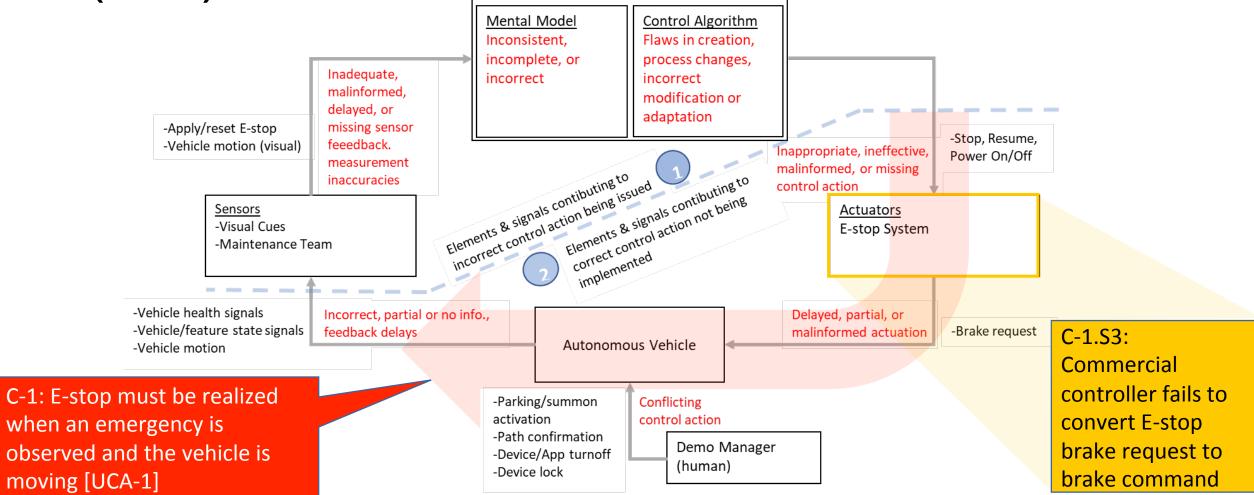

- H-1 = AV does not maintain safe distance to VRU [L-1,L-3]
- H-2 = AV leaves the designated demo zone [L-1,L-2,L-3]
- H-3 = AV does not maintain safe distance to another AV [L-2,L-3]
- H-4 = AV does not maintain safe distance to structure [L-2,L-3]
- H-5 = AV activates without request during autonomous maneuver [L-3]
- H-6 = AV activates due to incorrect request during autonomous maneuver [L-3]
- H-7 = AV does not respond to requests during autonomous maneuver [L-1, L-2, L-3]

Process model variables

- Emergency situation: Yes, No
- Vehicle: Stationary, Moving

STPA Step 2: modeling the control structure

STPA Step 3: identifying unsafe control


Command En	hergene	C	Not providing causes hazard	roviv ng Lauses hazard	To early, too late	applied too soon	Sr. No		Controller Constraint
E-stop button press	Yes	moving	H1, H2	-	-	-	1	E-stop is not provided when an emergency is observed and the vehicle is moving	E-stop must be activated when an emergency is observed and the vehicle is moving
	-	moving					1	emergency is observed and the unitsite is moving	E stop must not be provided when an emergency is observed and the vehicle is maxing
	-	-			10, 10			E-stop is provided too late when an emergency is alsoened and the vehicle is maxing	E-stop must be provided within contain duration of observing an emergency when the onlicits is maxing
	-	stationary	10, 10					E-stop is not provided when a potential emergency is observed and the vehicle is stationary.	E-stop must be provided when an emergency is observed and the vehicle is stationary
	-	-						E-stop is provided when no emergency is alsorved and the unlicks is maxing	E-stop must not be provided when no emergency is observed and the vehicle is moving
	84	-		*0				E-stop is provided when no emergency is alsoened and the vehicle is stationary	E-stop must not be provided when no emergency is deserved and the vehicle is stationary

Command	Emergency	AV	Not providing causes hazard	causes	early	Stopped too early applied too soon	Sr. No.		Controller Constraint
E-stop button press	Yes	moving	H-1, H-2, H-3, H-4	-	-	-	1	an emergency is observed	E-stop must be realized when an emergency is observed and the vehicle is moving

STPA Step 4: identify loss scenarios (UCA-1) UCA-1: E-stop is not provided

STPA Step 4: identify loss scenarios (C-1)

Key results

- 1. Derived non-material solutions (operational requirements)
 - Not having more than one moving AV in the demo zone at any given time
- 2. Identified the need for a dedicated engineer (signal monitor) to complement ESO
 - Monitoring vehicle signals not visible to the E-stop operator
- 3. Identified the need for a redundant brake implementation
 - Single point failures of off-the-shelf intermediate controller
- 4. Recommended protected access to the AVP mobile app
- 5. Demo checklist with roles and expectations were created for demo training
 - For stakeholders both internal (Zenuity) and external (Veoneer)
- 6. Systems engineering and STPA artifacts from this analysis were instrumental in driving clarity and a common language across the organization
 - ConOps, functional control structures, control diagrams

Video from CES Demo (1.5x)

Next Steps

- Extending system boundary to consider additional control loops in the AVP feature
- Integrating STPA into Zenuity's systems engineering process
- Improve human controller analysis using the STPA Engineering for Humans extension

Thank you for your time. Questions?

Contact Info: Amardeep Sidhu: <u>Amardeep.Sidhu@Zenuity.com</u> Shabin Mahadevan: <u>Shabin.Mahadevan@Zenuity.com</u>