GENERAL DYNAMICS Mission Systems

Integrating STAMP-Based Hazard Analysis with MIL-STD-882E Functional Hazard

Analysis

A Consistent and Coordinated Process Approach to MIL-STD-882E Functional Hazard Analysis

Nicolas H. Malloy Systems Engineer nicolas.malloy@gd-ms.com

Outline

- Purpose
- Problem
- Problem Approach
- Conclusion
- Recommendations
- Benefits
- References

Purpose

- Promote the integration of STAMP-Based Hazard Analysis with MIL-STD-882E Functional Hazard Analysis
 - Document a process which organizations can follow to conduct well-crafted safety hazard analysis
 - Improve the safety process through the use of a continuous process improvement plan
 - Break through "business as usual" paradigms
 - System safety must be an organic component of the system design process (hardware, software, etc.)

Problem

- MIL-STD-882E provides high-level descriptions of tasks required to achieve standard compliance
 - Very helpful for some tasks
 - Others leave the practitioner needing more instruction
- Example: Functional Hazard Analysis
 - List of eight tasking elements
 - There are high-level descriptions but little instructions or references provided
 - Some tasking elements are straight forward while others are not
 - Can lead to analysis approach based on assumption
 - Tasking elements build upon each other Effectiveness and quality of hazard identification and mitigation controls become susceptible to serious degradation if initial tasks are flawed
 - A consistent and coordinated process is needed

GENERAL DYNAMICS

Mission Systems

Problem Approach

- Integrate STAMP-Based Hazard Analysis with MIL-STD-882E Functional Hazard Analysis
 - Map STAMP and STPA → MIL-STD-882E Functional Hazard Analysis Tasking Elements
 - Document rationale

- Develop a Safety Process and Plan to be shared with the safety community
 - Whitepapers can be written as necessary to support the process

GENERAL DYNAMICS

Mission Systems

System Decomposition

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
a.	Decomposition of the system and	STAMP	Decomposing the system and its related subsystems
	its related subsystems to the major		to the major component level feeds directly into
	component level. ³		STAMP with the construction of the Control Structure.
			Also includes early safety Requirements and
			Constraints development and preliminary identification
			Hazards and Mishaps.

Control Structure for a Generic Man/Machine System

GENERAL DYNAMICS Mission Systems

Functional Descriptions of Subsystems and Components

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
b.	A functional description of each	STAMP	Documenting the behavioral characteristics of the
	subsystem and component		system using functional descriptions contributes to
	identified. ³		STAMP with the continued construction of the Control
			Structure. Also includes early safety Requirements and
			Constraints development and preliminary identification
			of Hazards and Mishaps continues to occur.

Control Structure for a Generic Man/Machine System

GENERAL DYNAMICS Mission Systems

Functional Descriptions of Interfaces

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
С.	A functional description of	STAMP	Documenting the behavioral characteristics of system
	interfaces between subsystems		interfaces contributes to STAMP and the continued
	and components. Interfaces should		construction of the Control Structure. Also includes
	be assessed in terms of		early safety Requirements and Constraints
	connectivity and functional inputs		development and preliminary identification of Hazards
	and outputs. ³		and Mishaps continues to occur.

Control Structure for a Generic Man/Machine System

GENERAL DYNAMICS Mission Systems

Identifying Unsafe Functional Behavior

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
d.	Hazards associated with loss of function, degraded function, or malfunction, or functioning out of time or out of sequence for the subsystems, components, and	STPA	<u>STPA step 1</u> identifies the potential for inadequate control of the system leading to a hazardous state. <u>STPA step 2</u> considers multiple controllers of the same components and seeks to identify conflicts and potential coordination problems. This
	should consider the next effect in a possible mishap sequence and the final mishap outcome. ³		events.

Action	Not Providing Causes Hazard	Providing Causes Hazard	Incorrect Timing / Order	Stopped Too Soon / Applied too long

Identifying Unsafe Control Actions²

GENERAL DYNAMICS Mission Systems

2. Leveson, N. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, Massachusetts: The MIT Press.

Identifying Unsafe Functional Behavior

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
d.	Hazards associated with loss of function, degraded function, or malfunction, or functioning out of time or out of sequence for the	STPA	<u>STPA step 1</u> identifies the potential for inadequate control of the system leading to a hazardous state. <u>STPA step 2</u> considers multiple controllers of the same components and seeks to identify
	subsystems, components, and interfaces. The list of hazards should consider the next effect in a possible mishap sequence and the final mishap outcome. ³		conflicts and potential coordination problems. This aids in identifying next effects and top level events.

Net Dreviding Dre STPA step 2 supports the identification of HOW unsafe control actions can occur

Example: Security •

- Integrated approach to Safety and Security with STPA-Sec⁴
 - Physical, Cyber, Parts Tampering, etc.

2. Leveson, N. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, Massachusetts: The MIT Press.

3. DoD. (2012). Department of Defense Standard Practice: System Safety. Washington DC.: Department of Defense (DoD).

4. Young, W., & Leveson, N. (2014). Inside Risks: An Integrated Approach to Safety and Security Based on Systems Theory. Communications of the ACM, 1-5.

GENERAL DYNAMICS Mission Systems

Stopped Too

©2017 General Dynamics. All rights reserved. 30 March 2017 10

Risk Assessment

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
е.	An assessment of the risk	STAMP	STAMP together with STPA identifies the system-
	associated with each identified	STPA	level Hazards associated with each function (and
	failure of a function, subsystem, or		unsafe control action) so the classification as to
	component. Estimate severity,		severity comes from the classification of the
	probability, and Risk Assessment		system level hazards and their associated
	Code (RAC) using the process		mishaps. ¹ STPA can be used to make risk
	described in Section 4 of 882E. ³		acceptance decisions and to plan mitigations for
			open safety risks that need to be changed before
			a system is deployed and field tested. ²

Probability x **Severity** = RAC

Subsystem/ Component	Function	Command	Unsafe Control	Hazard	Severity	Probability	RAC
 Electromechanical, Digital, Human, or Social² 	A well order set of unique commands	A specific order issued by a Subsystem/ Component	A specific order issued by a Subsystem/Compo nent that contributes/leads to a hazard	A real or potential condition that could lead to a mishap	An event or series of events that result in a loss	A quantitative or qualitative assessment used to express the likelihood of an events occurrence	An assessment comprised of mishap probability and severity

Risk Assessment Traceability Matrix

GENERAL DYNAMICS Mission Systems

1. Leveson, N. (2016). STPA Compliance with Army Safety Standards and Comparison with SAE ARP 4761. Cambridge, Massachusetts: The MIT Press.

2. Leveson, N. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, Massachusetts: The MIT Press.

Risk Assessment (con't)

Function Allocations

Tasking	MIL-STD-882E FHA Tasking Element	Allocation	Rationale
Element	Description		
f.	An assessment of whether the functions	STAMP	Determining how system functionality and
	identified are to be implemented in the	STPA	components are to be implemented is
	design hardware, software, or human		based on the safety Requirements and
	control interfaces. This assessment		Constraints that are developed while the
	should map the functions to their		safety practitioner works through STAMP
	implementing hardware or software		and STPA steps 1 and 2 iteratively. "Like"
	components. Functions allocated to		Commands can also be Functionally
	software should be mapped to the lowest		Grouped. This can be used to establish
	level of technical design or configuration		traceability between the Functions,
	item prior to coding (e.g., implementing		Commands, Hazards, Safety Requirements,
	modules or use cases). ³		and Constraints. Example: RTM

Functional Decomposition

Function Allocations (con't)

<u>Key</u>

Func_n Function_n

- CSCI Computer Software Configuration Item
- CSC Computer Software Component
- CSU Computer Software Unit

Functional Hazard Traceability Matrix

GENERAL DYNAMICS Mission Systems

Software Criticality Index Assessments

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
g.	An assessment of Software Control	STAMP	SCC and SwCI are unique to MIL-STD-882E but
	Category (SCC) for each Safety-	STPA	the determination for how software functionality is
	significant Software Function		to be implemented is in part based upon the
	(SSSF). Assign a Software		technology needed to support the safety
	Criticality Index (SwCI) for each		Requirements and Constraints that are developed
	SSSF mapped to the software		while the safety practitioner works through
	design architecture. ³		STAMP and STPA steps 1 and 2 iteratively.

SCC x Severity = SwCl \rightarrow LoR

Subsystem/ Component	Function	Command	SCC	Unsafe Control	Hazard	Severity	SwCl	LoR
 Electromechanical, Digital, Human, or Social² 	A well order set of unique commands	A specific order issued by a Subsystem/ Component	The degree of software control (Autonomous, Semi- Autonomous, Redundant Fault Tolerant, Influential, or Not Involved)	A specific order issued by a Subsystem/ Component that contributes/ leads to a hazard	A real or potential condition that could lead to a mishap	An event or series of events that result in a loss	An event or series of events that result in a loss	Depth and breadth of software analysis and verification activities necessary to provide a sufficient level of confidence ³

SwCI Assessment Traceability Matrix

GENERAL DYNAMICS

Mission Systems

30 March 2017 ©2017 General Dynamics. All rights reserved.

Software Criticality Index Assessments (con't)

Identifying Safety Requirements and Constraints

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
h.	A list of requirements and	STAMP	STAMP begins with the preliminary identification
	constraints (to be included in the	STPA	of safety requirements and constraints. Analysis of
	specifications) that, when		the system and component hazards identified
	successfully implemented, will		during STPA steps 1 and 2 aids in the iterative
	eliminate the hazard, or reduce the		development of the safety Requirements and
	risk. These requirements could be		Constraints necessary to address the unsafe
	in the form of fault tolerance,		controls leading to hazards.
	detection, isolation, annunciation, or		
	recovery. ³		

Subsystem/ Component	Function	Command	Unsafe Control	Hazard	Mishap	Safety Requirement	Constraint	Requirement Type
 Electromechanical, Digital, Human, or Social² 	A well order set of unique commands	A specific order issued by a Subsystem/ Component	A specific order issued by a Subsystem/Compo nent that contributes/leads to a hazard	A real or potential condition that could lead to a mishap	An event or series of events that result in a loss	Derived from the mission or reason for the systems existence ²	Represents acceptable ways the system can achieve mission goals ²	 Fault tolerance, Detection, Isolation, Annunciation, or recovery.³

Safety Requirements and Constraints Traceability Matrix

GENERAL DYNAMICS Mission Systems

2. Leveson, N. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, Massachusetts: The MIT Press.

Conclusion

- STAMP-Based Hazard Analysis provides the needed conceptual rigidity and contextual flexibility to perform accurate and complete Functional Hazard Analysis consistently
 - − Mapping Exercise works ✓

- Certain tasking elements call out Probabilistic Risk Assessment (PRA) and various software (functional control) specific assessments that are based on software implementation and unique to MIL-STD-882E
 - These are not part of STAMP-Based Hazard Analysis process but can be used to influence design decisions

GENERAL DYNAMICS Mission Systems

Recommendations

Use this mapping as the basis for generating a process document that serves to instantiate STAMP-Based Hazard Analysis as a means for performing MIL-STD-882E Functional Hazard Analysis

Other considerations:

- Generate tools to manage the analysis approach
- Use modeling tools to create and maintain the control structure(s)
- Investigate an integrated approach using modeling and analysis management tools in the same environment

Benefits

- Consistent approach that documents MIL-STD-882E has been met
- Safety is approached in a consistent and coordinated manner
- All personnel involved in the design of safety significant components (hardware, software, or human) must meet safety requirements
- Modeling approach allows for the design team to continually improve the safety of the system prior to pursuing implementation
- Iterative approach can drive down cost and schedule long term

References

- Leveson, N. (2016). STPA Compliance with Army Safety Standards and Comparison with SAE ARP 4761. Cambridge, Massachusetts: The MIT Press.
- 2. Leveson, N. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, Massachusetts: The MIT Press.
- 3. DoD. (2012). Department of Defense Standard Practice: System Safety. Washington DC.: Department of Defense (DoD).
- 4. Young, W., & Leveson, N. (2014). Inside Risks: An Integrated Approach to Safety and Security Based on Systems Theory. Communications of the ACM, 1-5.

GENERAL DYNAMICS

Mission Systems