Engineering a Safer and
More Secure World

Nancy Leveson
MIT

o S - g i B
3 @S >
T AN . .
— RAE - A4 ~
: - = " N
' : -, : ‘
" -
. i
> O et NN N NV Taneew. 7=

i, 2dz2Q@0S O NBFdzAf f @& (K2dzaAKI
i 2dz2Q@0S R2yS A0 | (GKz2dzaly
I It comes naturally to you

i, . 2dz (y29¢ 6KIO &2dzQNB R2A
trained to do your whole life.

I Nothing could possibly go wrong, right?

© Copyright Nancy Leveson, June 2011

Think Again

© Copyrgnt Nancy Leveson, June Zull

ADCAP MODS

Qasting ACCAP Uzgraded ADCAF
GAC Sacton GaC Section

G&C
UPGRADE
Tolsd Cordt Bix Toort 30 Totd Cand Dox Sount 16
PAREE UM, o u-;:w u;'vt:-::“:,".;?:,."
TORPRDO
PROPULSION
UNIEY
(R U

© Copyright Nancy Leveson, June 2011

Goal: Answer the Following Questions:

A Why do we need something new?

A What is STAMP and how does it differ from what people do no
A What kinds of tools are available?

A How is it being used?

A Does it work?

© Copyright Nancy Leveson, June 2011

Why do we need something new?

© Copyright Nancy Leveson, June 2011

Our current tools are all 4®5 years old
but our technology Is very different today

i_‘LA.
19|40 1950 1960 1970 1980 1990 2000 2010 2|020
| I [II I| [[[[|
EMEA FTA ETA] _ B
HAZOP U Introduction of computer control
Bow Tie U Exponential increases in complexity
(CCA) i New technology
FTA + ETA

U Changes in human roles

Assumes accidents caused
by component failures
© Copyright Nancy Leveson, June 2011

M® {2FU06FNBE R2Sa y2i0 a

General | 4 | Special

Software is simply the design of a machine abstracted
from its physical realization

Advantages

I Machines that were physically impossible or impractical to build
become feasible

I Design can be changed without retooling or manufacturing

I Can concentrate on steps to be achieved without worrying about how
steps will be realized physically

{2FU6I NB Aad Ldz2NB RSaAdy | yF

'—35"-" A

'ﬁl‘i c’sa;, -7
(P
A

| t6s only s, 8
failure, sir! It will

What Failed Here?

A Navy aircraft were ferrying missiles from one location to
another.

A One pilot executed a planned test by aiming at aircraft in front
and firing a dummy missile.

A Nobody involved knew that the software was designed to
substitute a different missile if the one that was commanded
to be fired was not in a good position.

A In this case, there was an antenna between the dummy
missile and the target so the software decided to fire a live
missile located in a different (better) position instead.

10

Accident with No Component
Failures

A Mars Polar Lander
I Have to slow down spacecraft to land safely

I Use Martian atmosphere, parachute, descent
engines (controlled by software)

s o et O

i Software knows landed because of sensitive sensors bh'l_é{-ﬁdfng
legs. Cut off engines when determine have landed.

i .dzi ay2AasSé O6FLtasS araylrtao o:
opens. Not in software requirements.

I Software not supposed to be operating at that time but
software engineers decided to start early to even out the load
on processor

I Software thought spacecraft had landed and shut down descent
engines while still 40 meters above surface
11

Two Types of Accidents

A Component Failure Accidents
I Single or multiple component failures

I Usually assume random failure

A Component Interaction Accidents
I Arise In interactions among components

I Related to complexity (coupling) in our system designs, which
leads to system design and system engineering errors

ib2 O2YLRYySyla YlIeé KIS aFlF Af S

I Exacerbated by introduction of computers and software but
problem is system design errors

12

Warsaw A320 Accident

A Software protected against activating thrust reversers when
airborne

A Hydroplaning and other factors made the software think the
plane had not landed

A Pilots could not activate the thrust reversers and ran off
runway into a small hill.

13

2. The role of software in accidents almost
always involves flawed requirements
I Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

I Unhandled controlleegbystem states and environmental
conditions

Autopilot _ Software Design
A Requirements A A of
Autopilot

© Copyright Nancy Leveson, June 2011

2. The role of software in accidents almost
always involves flawed requirements
I Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

I Unhandled controlleegbystem states and environmental
conditions

Autopilot _ Design
A Requirements| A (Z0Tare @) TG
Autopilot

© Copyright Nancy Leveson, June 2011

2. The role of software In accidents almost
always involves flawed requirements

I Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

I Unhandled controlleebystem states and environmental
conditions

Autopilot @ _ Software Design
R remen
Expert equirements /) Engineer A of
Autopilot

hyteé OGUONBAY3I (2 3ISU GKS az2Fidgl NI
not make it safer under these conditions

Boeing 787 Lithium Battery Fires

I JAE25. unicef ¢

I 0000 200000009

Models predicted 787 battery thermal
problems would occur once in 10
million flight hours (107 flight hours
using 4761 certification paradigm).

But two batteries overheated in just
two weeks (52,000 flight hours or
2.6 X 104 flight hours) [NTSB 2013]

17
© Copyright John Thomas 2016

Boeing 787 Lithium Battery Fire:s

A A module monitors for smoke in the
battery bay, controls fans and ducts
to exhaust smoke overboard.

=1
E
E|
Ec
»
&
E
E
E J
Ekl
IE |
(g
%3

A Power unit monitors for low battery
voltage, shut down various
electronics, including ventilation

A Smoke could not be redirected
outside cabin

All software requirements were satisfied!

The requirements were unsafe

18
© Copyright John Thomas 2016

3. Software Allows Unlimited System Complexity

A Complexity (coupling) means can no longer

I Plan, understand, anticipate, and guard against all undesired
system behavior

I Exhaustively test to get out all design errors

A Contextdetermines whether software is safe

T Ariane 4 software was safe but whezrused in Ariane 5, the
spacecraft exploded

I DAL, Rigor of Development, SIL will not ensure software is safe

I Not possible to look at software alone and determine its
aal FSaeé

19

Safety Depends on Context

Reliability Is NOT equal to safety
In complex,

software-intensive systems

