
© Copyright Nancy Leveson, June 2011

Engineering a Safer and

More Secure World

Nancy Leveson

MIT

© Copyright Nancy Leveson, June 2011

– You’ve carefully thought out all the angles

– You’ve done it a thousand times

– It comes naturally to you

– You know what you’re doing, it’s what you’ve been
trained to do your whole life.

– Nothing could possibly go wrong, right?

© Copyright Nancy Leveson, June 2011

Think Again

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Goal: Answer the Following Questions:

• Why do we need something new?

• What is STAMP and how does it differ from what people do now?

• What kinds of tools are available?

• How is it being used?

• Does it work?

5

Why do we need something new?

© Copyright Nancy Leveson, June 2011

Our current tools are all 40-65 years old
but our technology is very different today

1940 20101980 202019901950 1960 1970 2000

FMEA FTA

HAZOP

Bow Tie

(CCA)

FTA + ETA

ETA
➢ Introduction of computer control

➢ Exponential increases in complexity

➢ New technology

➢ Changes in human roles

Assumes accidents caused

by component failures

© Copyright Nancy Leveson, June 2011

1. Software does not “fail”

Advantages

– Machines that were physically impossible or impractical to build
become feasible

– Design can be changed without retooling or manufacturing

– Can concentrate on steps to be achieved without worrying about how
steps will be realized physically

Software is pure design and designs do not “fail”

+ =
General

Purpose

Machine

Software
Special

Purpose

Machine

Software is simply the design of a machine abstracted

from its physical realization

© Copyright Nancy Leveson, June 2011

It’s only a random

failure, sir! It will

never happen again.

What Failed Here?

• Navy aircraft were ferrying missiles from one location to
another.

• One pilot executed a planned test by aiming at aircraft in front
and firing a dummy missile.

• Nobody involved knew that the software was designed to
substitute a different missile if the one that was commanded
to be fired was not in a good position.

• In this case, there was an antenna between the dummy
missile and the target so the software decided to fire a live
missile located in a different (better) position instead.

10

Accident with No Component
Failures

• Mars Polar Lander

– Have to slow down spacecraft to land safely

– Use Martian atmosphere, parachute, descent
engines (controlled by software)

– Software knows landed because of sensitive sensors on landing
legs. Cut off engines when determine have landed.

– But “noise” (false signals) by sensors generated when parachute
opens. Not in software requirements.

– Software not supposed to be operating at that time but
software engineers decided to start early to even out the load
on processor

– Software thought spacecraft had landed and shut down descent
engines while still 40 meters above surface

11

Two Types of Accidents

• Component Failure Accidents

– Single or multiple component failures

– Usually assume random failure

• Component Interaction Accidents

– Arise in interactions among components

– Related to complexity (coupling) in our system designs, which
leads to system design and system engineering errors

– No components may have “failed”

– Exacerbated by introduction of computers and software but
problem is system design errors

12

Warsaw A320 Accident

• Software protected against activating thrust reversers when
airborne

• Hydroplaning and other factors made the software think the
plane had not landed

• Pilots could not activate the thrust reversers and ran off
runway into a small hill.

13

2. The role of software in accidents almost
always involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

  

© Copyright Nancy Leveson, June 2011

2. The role of software in accidents almost
always involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

  

© Copyright Nancy Leveson, June 2011

2. The role of software in accidents almost
always involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

Only trying to get the software “correct” or to make it reliable will
not make it safer under these conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

  

Boeing 787 Lithium Battery Fires

17
© Copyright John Thomas 2016

Models predicted 787 battery thermal

problems would occur once in 10

million flight hours (107 flight hours

using 4761 certification paradigm).

But two batteries overheated in just

two weeks (52,000 flight hours or

2.6 X 104 flight hours) [NTSB 2013]

• A module monitors for smoke in the
battery bay, controls fans and ducts
to exhaust smoke overboard.

• Power unit monitors for low battery
voltage, shut down various
electronics, including ventilation

• Smoke could not be redirected
outside cabin

• Shut down various electronics including
ventilation.

• Smoke could not be redirected outside cabin

Boeing 787 Lithium Battery Fires

18

All software requirements were satisfied!
The requirements were unsafe

© Copyright John Thomas 2016

3. Software Allows Unlimited System Complexity

• Complexity (coupling) means can no longer

– Plan, understand, anticipate, and guard against all undesired
system behavior

– Exhaustively test to get out all design errors

• Context determines whether software is safe

– Ariane 4 software was safe but when reused in Ariane 5, the
spacecraft exploded

– DAL, Rigor of Development, SIL will not ensure software is safe

– Not possible to look at software alone and determine its
“safety”

19

Safe or Unsafe?

Safety Depends on Context

Reliability is NOT equal to safety
in complex,

software-intensive systems

© Copyright Nancy Leveson, June 2011

A BC

Unreliable but not unsafe

(FMEA)
Unsafe but not unreliable

(STPA)

Unreliable and unsafe

(FTA, HAZOP, FMECA, STPA …)

Confusing Safety and Reliability

Preventing Component or Functional

Failures is Not Enough

Scenarios

involving failures
Unsafe

scenarios

23

4. Software changes the role of humans in systems

Typical assumption is that operator error is cause of most incidents
and accidents

– So do something about operator involved (admonish, fire,
retrain them)

– Or do something about operators in general

• Marginalize them by putting in more automation

• Rigidify their work by creating more rules and procedures

© Copyright Nancy Leveson, June 2011

Another Accident Involving Thrust Reversers

• Tu-204, Moscow, 2012

• Red Wings Airlines Flight
9268

• The soft 1.12g touchdown
made runway contact a little
later than usual.

• With the crosswind, this
meant weight-on-wheels
switches did not activate and
the thrust-reverse system
would not deploy.

© Copyright John Thomas 2016

25

Another Accident Involving Thrust Reversers

• Pilots believe the thrust
reversers are deploying like
they always do. With the
limited runway space, they
quickly engage high engine
power to stop quicker.
Instead this accelerates the
Tu-204 forwards, eventually
colliding with a highway
embankment.

© Copyright John Thomas 2016

26

Another Accident Involving Thrust Reversers

• Pilots believe the thrust
reversers are deploying like
they always do. With the
limited runway space, they
quickly engage high engine
power to stop quicker.
Instead this accelerates the
Tu-204 forwards, eventually
colliding with a highway
embankment.

In complex systems, human and technical
considerations cannot be isolated

© Copyright John Thomas 2016

27

© Copyright Nancy Leveson, June 2011

Fumbling for his recline button Ted

unwittingly instigates a disaster

© Copyright Nancy Leveson, June 2011

A Systems View of Operator Error

• Operator error is a symptom, not a cause

• All behavior affected by context (system) in which occurs

– Role of operators is changing in software-intensive systems as is the
errors they make

– Designing systems in which operator error inevitable and then blame
accidents on operators rather than designers

• To do something about operator error, must look at system in
which people work:

– Design of equipment

– Usefulness of procedures

– Existence of goal conflicts and production pressures

• Human error is a symptom of a system that needs to
be redesigned

© Copyright Nancy Leveson, June 2011

Human factors

concentrates on the

“screen out”

Hardware/Software

engineering

concentrates on the

“screen in”

30

© Copyright Nancy Leveson, June 2011

Not enough attention on integrated

system as a whole

(e.g, mode confusion, situation

awareness errors, inconsistent

behavior, etc.

31

What is STAMP and how does it
differ from what people do now?

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

The Problem is Complexity

Ways to Cope with Complexity

• Analytic Reduction

• Statistics

• Systems Theory

Traditional Approach to
Coping with Complexity

34

© Copyright Nancy Leveson, June 2011

Physical/Functional: Separate into distinct components

C1

C3

C4

C2

C5

Analytic Reduction (“Divide and Conquer”)

1. Divide system into separate parts

Behavior: Separate into events over time

E1 E2 E5E3 E4

Components interact

In direct ways

Each event is the direct

result of the preceding event

35

© Copyright Nancy Leveson, June 2011

Analytic Reduction (2)

2. Analyze/examine pieces separately and combine results

C1

C3

C4

C2

C5
E1 E2 E5E3 E4

▪ Assumes such separation does not distort phenomenon

✓ Each component or subsystem operates independently

✓ Components act the same when examined singly as when playing

their part in the whole

✓ Components/events not subject to feedback loops and non-linear

interactions

✓ Interactions can be examined pairwise

36

Bottom Line

• These assumptions are no longer true in our

– Tightly coupled

– Software intensive

– Highly automated

– Connected

engineered systems

• Need a new theoretical basis

– System theory can provide it

37

© Copyright Nancy Leveson, June 2011

Traditional Approach to Safety

• Reductionist

– Divide system into components

– Assume accidents are caused by component failure

– Identify chains of directly related physical or logical (functional)
component failures that can lead to a loss

– Evaluate reliability of components separately and later combine
analysis results into a system reliability value

Note: Assume randomness in the failure events so can derive
probabilities for a loss

– Software and humans do not satisfy this assumption

© Copyright Nancy Leveson, June 2011

Chain-of-events example

© Copyright Nancy Leveson, June 2011

Chain-of-events example

How are the event chains identified?

Forward vs. Backward Search

© Copyright Nancy Leveson, June 2011

• Forms the basis for most safety engineering and reliability
engineering analysis:

FTA, PRA, FMEA/FMECA, Event Trees, FHA, etc.

and design (concentrate on dealing with component failure):

Redundancy and barriers (to prevent failure propagation)

High component integrity and overdesign

Fail-safe design

(humans) Operational procedures, checklists, training, ….

Accidents as Chains of Failure Events

© Copyright Nancy Leveson, June 2011

Standard Approach does not Handle

• Component interaction accidents

• Systemic factors (affecting all components and barriers)

• Software and software requirements errors

• Human behavior (in a non-superficial way)

• System design errors

• Indirect or non-linear interactions and complexity

• Migration of systems toward greater risk over time (e.g., in search
for greater efficiency and productivity)

© Copyright Nancy Leveson, June 2011

It’s still hungry … and I’ve been stuffing worms into it all day.

© Copyright Nancy Leveson, June 2011

We Need Something New

• New levels of complexity, software, human factors do not fit
into a reliability-oriented world.

• Two approaches being taken now:

Pretend there is no problem

Shoehorn new technology and new

levels of complexity into old methods

45

© Copyright Nancy Leveson, June 2011

Systems Theory

• Developed for systems that are

– Too complex for complete analysis

• Separation into (interacting) subsystems distorts the results

• The most important properties are emergent

– Too organized for statistics

• Too much underlying structure that distorts the statistics

• New technology and designs have no historical information

• First used on ICBM systems of 1950s/1960s

• Basis for System Engineering and System Safety

© Copyright Nancy Leveson, June 2011

Systems Theory (2)

• Focuses on systems taken as a whole, not on parts taken
separately

• Emergent properties

– Some properties can only be treated adequately in their
entirety, taking into account all social and technical aspects

“The whole is greater than the sum of the parts”

– These properties arise from relationships among the parts of
the system

How they interact and fit together

© Copyright Nancy Leveson, June 2011

Degree of

Randomness

Degree of Coupling

Organized

Simplicity

(can use analytic

reduction)

Unorganized Complexity

(can use statistics)

Organized Complexity

© Copyright Nancy Leveson, June 2011

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

Safety and security are emergent properties

© Copyright Nancy Leveson, June 2011

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

Safety and security are emergent properties

The whole is greater than

the sum of its parts

© Copyright Nancy Leveson, June 2011

Controller

Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

© Copyright Nancy Leveson, June 2011

Controller

Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

Air Traffic Control:

Safety

Throughput

© Copyright Nancy Leveson, June 2011

Controls/Controllers Enforce Safety Constraints

• Power must never be on when access door open

• Two aircraft/automobiles must not violate minimum
separation

• Aircraft must maintain sufficient lift to remain airborne

• Integrity of hull must be maintained on a submarine

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards

• Public health system must prevent exposure of public to
contaminated water and food products

• Pressure in a offshore well must be controlled

© Copyright Nancy Leveson, June 2011

Controls/Controllers Enforce Safety Constraints (2)

• Runway incursions and operations on wrong runways or
taxiways must be prevented

• Bomb must not detonate without positive action by authorized
person

• Submarine must always be able to blow the ballast tanks and
return to surface

• Truck drivers must not drive when sleep deprived

• Fire must not be initiated on a friendly target

These are the High-Level Functional Safety
Requirements to Address During Design

© Copyright Nancy Leveson, June 2011

A Broad View of “Control”

Component failures and unsafe interactions may be “controlled”
through design

(e.g., redundancy, interlocks, fail-safe design)

or through process
– Manufacturing processes and procedures

– Maintenance processes

– Operations

or through social controls

– Governmental or regulatory

– Culture

– Insurance

– Law and the courts

– Individual self-interest (incentive structure)

© Copyright Nancy Leveson, June 2011

Example

Safety

Control

Structure

(SMS)

© Copyright Nancy Leveson, June 2011

(Qi Hommes)

Safety as a Control Problem

• Goal: Design an effective control structure that eliminates or
reduces adverse events.

– Need clear definition of expectations, responsibilities, authority,
and accountability at all levels of safety control structure

– Need appropriate feedback

– Entire control structure must together enforce the system safety
property (constraints)

• Physical design (inherent safety)

• Operations

• Management

• Social interactions and culture

58

© Copyright Nancy Leveson, June 2011

Controlled Process

Process

Model

Control Actions

(via actuators)

Feedback

(via sensors

Role of Process Models in Control

• Controllers use a process model to
determine control actions

• Accidents often occur when the
process model is incorrect

• Four types of unsafe control actions:
• Control commands required for safety

are not given

• Unsafe ones are given

• Potentially safe commands given too
early, too late

• Control stops too soon or applied too
long

Controller

59
(Leveson, 2003); (Leveson, 2011)

Control

Algorithm

59

© Copyright Nancy Leveson, June 2011

Identifying Causal Scenarios for Unsafe Control

60

Inadequate Control

Algorithm

(Flaws in creation,

process changes,

incorrect modification

or adaptation)

Controller

Process Model

(inconsistent,

incomplete, or

incorrect)

Control input or external

information wrong or

missing

Actuator

Inadequate

operation

Inappropriate,

ineffective, or

missing control

action

Sensor

Inadequate

operation

Inadequate or

missing feedback

Feedback Delays

Component failures

Changes over time

Controlled Process

Unidentified or out-

of-range

disturbance

Controller

Process input missing or wrong
Process output

contributes to

system hazard

Incorrect or no information

provided

Measurement inaccuracies

Feedback delays

Delayed
operation

Conflicting control actions

Missing or wrong

communication with

another controller

Controller

© Copyright Nancy Leveson, June 2011

STAMP (System-Theoretic Accident Model and
Processes)

• Defines safety/security as a control problem (vs. failure
problem)

• Applies to very complex systems

• Includes software, humans, operations, management

• Based on general system theory

• Expands the traditional model of the accident causation
(cause of losses)

– Not just a chain of directly related failure events

– Losses are complex processes

© Copyright Nancy Leveson, June 2011

Safety as a Dynamic Control Problem (STAMP)

• Hazards result from lack of enforcement of safety constraints
in system design and operations

• Goal is to control the behavior of the components and systems
as a whole to ensure safety constraints are enforced in the
operating system

• A change in emphasis:

“prevent failures”

“enforce safety/security constraints on system behavior”

(note that enforcing constraints might require preventing failures
or handling them but includes more than that)

What kinds of tools are available?

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

STAMP: Theoretical Causality Model

Accident Analysis

CAST

Hazard Analysis

STPA

System Engineering

(e.g., Specification,

Safety-Guided Design,

Design Principles)

MBSE

SpecTRM

Risk Management

Operations

Management Principles/

Organizational Design

Identifying Leading

Indicators
Organizational/Cultural

Risk Analysis

Tools

Processes

Regulation

Security Analysis

STPA-Sec

Early Concept Anal.

STECA

© Copyright Nancy Leveson, June 2011

Low

High

Concept Requirements Design Build Operate

C
o

s
t

o
f

F
ix

Attack/Accident

Response

System

Safety/Security

Requirements

Systems

Engineering

Cyber

Security/Safety

“Bolt-on”

Safety/Secure

Systems

Thinking

Build safety and security into

system from beginning

How is it being used?
Does it work?

Is it useful?

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Is it Practical?

• STPA has been or is being used in a large variety of industries

– Spacecraft

– Aircraft / Air Traffic Control

– UAVs (RPAs)

– Defense systems

– Automobiles

– Medical Devices and Hospital Safety

– Chemical plants

– Oil and Gas

– Nuclear and Electric Power

– Finance

– Robotic Manufacturing / Workplace Safety

– Etc.

67

Uses Beyond Traditional System Safety

• Quality

• Producibility (of aircraft)

• Nuclear security

• Banking and finance

• Engineering process optimization

• Organizational culture

• Workplace safety

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Is it Effective?

• Most of these systems are very complex (e.g., the new
U.S. missile defense system)

• In all cases where a comparison was made (to FTA, HAZOP,
FMEA, ETA, etc.)

– STPA found the same hazard causes as the old methods

– Plus it found more causes than traditional methods

– In some evaluations, found accidents that had occurred that
other methods missed (e.g., EPRI)

– Cost was orders of magnitude less than the traditional
hazard analysis methods

– Same results for security evaluations by CYBERCOM

69

© Copyright Nancy Leveson, June 2011

Summary

• More comprehensive and powerful approach to safety (and
security and any emergent property)

• Includes social, organizational, operator, software-related
factors

• Top-down system engineering approach; easily integrated into
system engineering processes.

• Handles much more complex systems than traditional safety
analysis approaches and costs less

Paradigm Change

• Does not imply what previously done is wrong and new approach
correct

• Einstein:

“Progress in science (moving from one

paradigm to another) is like climbing a

mountain”

As move further up, can

see farther than on lower points

© Copyright Nancy Leveson, June 2011

Paradigm Change (2)

New perspective does not invalidate

the old one, but extends and enriches

our appreciation of the valleys below

Value of new paradigm often depends on

ability to accommodate successes and

empirical observations made in old paradigm.

New paradigms offer a broader,

rich perspective for interpreting

previous answers.

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Systems Thinking

© Copyright Nancy Leveson, June 2011

Nancy Leveson, Engineering a Safer World:

Systems Thinking Applied to Safety

MIT Press, January 2012

Accident: An undesired and unplanned event that results in
a loss, including loss of human life or human injury,
property damage, environmental pollution, mission,
damage to a company’s reputation, etc.

(This is the same as what defense world calls a Mishap)

© Copyright Nancy Leveson, June 2011

Domino “Chain of events” Model

Event-based

Cargo
door fails

Causes Floor
collapses

Causes Hydraulics
fail

Causes Airplane
crashes

© Copyright John Thomas 2013

DC-10:

© Copyright Nancy Leveson, June 2011

Event Chain

• E1: Worker washes pipes without inserting a slip blind.

• E2: Water leaks into MIC tank

• E3: Gauges do not work

• E4: Operator does not open valve to relief tank

• E3: Explosion occurs

• E4: Relief valve opens

• E5: Flare tower, vent scrubber, water curtain do not work

• E5: MIC vented into air

• E6: Wind carries MIC into populated area around plant.

What was the “root cause”?

© Copyright Nancy Leveson, June 2011

Chain-of-Events Example

© Copyright Nancy Leveson, June 2011

Chain-of-events example

© Copyright Nancy Leveson, June 2011

Chain-of-events example

How are the event chains identified?

Forward vs. Backward Search

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Limitations

• Component failure accidents only

– Not accidents arising from interactions among non-failed components,
e.g., system design flaws

• Single component failures only

– What about non-events (systemic factors)? safety culture?, conditions
that influence behavior, changes over time …

• Requires detailed system design (limits early analysis)

• Works best on hardware/mechanical components

– Not software, human operators, organizational factors

Limitations

• Inefficient, analyzes important + unimportant

– Can result in thousands of pages of worksheets

• Tends to encourage redundancy as a solution (which may not be
very effective and may be very costly)

• Failure modes must already be known

– Best for standard parts with few and well-known failure modes

© Copyright Nancy Leveson, June 2011

Reason Swiss Cheese = Domino Model

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Ignores common cause failures of defenses

(systemic accident factors)

© Copyright Nancy Leveson, June 2011

Does not include migration to states of higher risk

© Copyright Nancy Leveson, June 2011

Assumes accidents are random events

coming together accidentally

© Copyright Nancy Leveson, June 2011

Assumes some (linear) causality or

precedence in the cheese slices (and holes)

© Copyright Nancy Leveson, June 2011

Just a chain of events, no explanation of

“why” events occurred

Our current tools are all 40-65 years old
but our technology is very different today

1940 20101980 202019901950 1960 1970 2000

FMEA FTA

HAZOP

Bow Tie

(CCA)

FTA + ETA

ETA
➢ Introduction of computer control

➢ Exponential increases in complexity

➢ New technology

➢ Changes in human roles

Assumes accidents caused

by component failures

Traditional
Safety Analysis
Methods

1. Assume accidents caused by chain of failure events

2. Identify the potential accident chains

3. Try to prevent the identified scenarios (chains)

a. Establish barriers between events or

b. Prevent component failures

© Copyright Nancy Leveson, June 2011

It’s only a random

failure, sir! It will

never happen again.

© Copyright Nancy Leveson, June 2011

.Trying to shoehorn new technology and new levels of
complexity into old methods will not work. We need something
new.

© Copyright Nancy Leveson, June 2011

It’s still hungry … and I’ve been stuffing worms into it all day.

97

© Copyright Nancy Leveson, June 2011

It’s still hungry … and I’ve been stuffing worms into it all day.

We Need New Tools for the New Problems
98

© Copyright Nancy Leveson, June 2011

STPA: System-Theoretic Process Analysis

• A top-down, system engineering analysis technique

• Identifies safety (or X) constraints (system and component
requirements)

• Identifies scenarios leading to violation of constraints
(requirements); use results to design or redesign system to be
safer

• Can be used on technical design and organizational design

• Supports a safety-driven design process where

– Analysis influences and shapes early design decisions

– Analysis iterated and refined as design evolves

• Easily integrates into system engineering and MBSE tools

© Copyright Nancy Leveson, June 2011

Example U.S. BDMS (for MDA)

• Non-advocate safety assessment just prior to deployment and field
testing

• Hazard was inadvertent launch

• Analysis done by two people over 5 months

• Deployment and testing held up for 6 months because so many
scenarios identified for inadvertent launch. In many of these
scenarios:

– All components were operating exactly as intended

– Complexity of component interactions led to unanticipated system
behavior

• STPA also identified component failures that could cause inadequate
control (most analysis techniques consider only these failure events)

8/2/2006 101

Status

Track Data

Fire Control

Radar

Operators

Engage Target

Operational Mode Change

Readiness State Change

Weapons Free / Weapons Hold

Operational Mode

Readiness State

System Status

Track Data

Weapon and System Status

Command

Authority

Doctrine

Engagement Criteria

Training

TTP

Workarounds

Early Warning

System

Status Request

Launch Report

Status Report

Heartbeat

Radar Tasking

Readiness Mode Change

Status Request

Acknowledgements

BIT Results

Health & Status

Abort

Arm

BIT Command

Task Load

Launch

Operating Mode

Power

Safe

Software Updates

Flight

Computer

Interceptor

Simulator
Launch Station

Fire DIsable

Fire Enable

Operational Mode Change

Readiness State Change

Interceptor Tasking

Task Cancellation

Command Responses

System Status

Launch Report

Launcher

Launch Position

Stow Position

Perform BIT

Interceptor

H/W

Arm

Safe

Ignite

BIT Info

Safe & Arm Status

BIT Results

Launcher Position

Abort

Arm

BIT Command

Task Load

Launch

Operating Mode

Power

Safe

Software Updates

Acknowledgements

BIT Results

Health & Status

Breakwires

Safe & Arm Status

Voltages

Exercise Results

Readiness

Status

Wargame Results

Safety Control Structure for FMIS

© Copyright Nancy Leveson, June 2011

Example Hazard Scenarios Found

• Operator could do something strange but possible at same
time that radars detect a potential (but not dangerous) threat

– Could lead to software issuing an instruction to enable firing an
interceptor at the non-threat

– Problem was a missing software requirement to handle this case

• Identified timing conditions that could lead to incorrectly
launching an interceptor

• Simulator data could be taken as real data

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

CAST: Accident Analysis Technique

• Provides a framework or process to assist in understanding
entire accident process and identifying systemic factors

• Get away from blame (“who”) and shift focus to “why” and
how to prevent in the future

• Reduces hindsight bias

• Goal is to determine

1. Why people behaved the way they did

2. Weaknesses in the safety control structure that allowed the
loss to occur

© Copyright Nancy Leveson, June 2011

Applies to Security Too (AF Col. Bill Young)

• Today currently primarily focus on tactics

– Cyber security often framed as battle between adversaries and
defenders (tactics)

– Requires correctly identifying attackers motives, capabilities,
targets

• Can reframe problem in terms of strategy

– Identify and control system vulnerabilities (vs. reacting to
potential threats)

– Top-down strategy vs. bottom-up tactics approach

– Tactics tackled later

Integrated Approach to Safety and Security:

• Safety: prevent losses due to unintentional actions by
benevolent actors

• Security: prevent losses due to intentional actions by
malevolent actors

• Key difference is intent

• Common goal: loss prevention

– Ensure that critical functions and services provided by networks
and services are maintained

– New paradigm for safety will work for security too

• May have to add new causes, but rest of process is the same

– A top-down, system engineering approach to designing safety
and security into systems

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

Safety and security are emergent properties

The whole is greater than

the sum of its parts

106

© Copyright Nancy Leveson, June 2011

Controller

Controlling emergent properties

(e.g., enforcing safety/security constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

107

© Copyright Nancy Leveson, June 2011

Controller

Controlling emergent properties

(e.g., enforcing safety/security constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

Air Traffic Control:

Safety

Throughput

108

© Copyright Nancy Leveson, June 2011

Controls/Controllers Enforce Safety Constraints

• Two aircraft/automobiles must not violate minimum
separation

• Aircraft must maintain sufficient lift to remain airborne

• Level of liquid in an ISOM tower must remain below a
specified level

• Toxic chemicals/radiation must not be released from plant

• Pressure in a deep water well must always be controlled

• Weapons must never be detonated inadvertently

These are the High-Level Functional Safety
Requirements (What/Why) to Address During Design (How)

109

© Copyright Nancy Leveson, June 2011

Control Structure at Aircraft Level

110

Comparison with Analytic Reduction (SAE ARP
4761)

111

© Copyright Nancy Leveson, June 2011

Ground System Control

112

© Copyright Nancy Leveson, June 2011

Wheel Brake System Control Structure

113

© Copyright Nancy Leveson, June 2011

Domino “Chain of events” Model

Chain of Failure Events

Cargo
door fails

Causes Floor
collapses

Causes Hydraulics
fail

Causes Airplane
crashes

DC-10:

© Copyright Nancy Leveson, June 2011

Reason Swiss Cheese (1990)

