
© Copyright Nancy Leveson, June 2011

Engineering a Safer and

More Secure World

Nancy Leveson

MIT

© Copyright Nancy Leveson, June 2011

ï¸ƻǳΩǾŜ ŎŀǊŜŦǳƭƭȅ ǘƘƻǳƎƘǘ ƻǳǘ ŀƭƭ ǘƘŜ ŀƴƎƭŜǎ

ï¸ƻǳΩǾŜ ŘƻƴŜ ƛǘ ŀ ǘƘƻǳǎŀƴŘ ǘƛƳŜǎ

ïIt comes naturally to you

ï¸ƻǳ ƪƴƻǿ ǿƘŀǘ ȅƻǳΩǊŜ ŘƻƛƴƎΣ ƛǘΩǎ ǿƘŀǘ ȅƻǳΩǾŜ ōŜŜƴ
trained to do your whole life.

ïNothing could possibly go wrong, right?

© Copyright Nancy Leveson, June 2011

Think Again

© Copyright Nancy Leveson, June 2011

© Copyright Nancy Leveson, June 2011

Goal: Answer the Following Questions:

ÅWhy do we need something new?

ÅWhat is STAMP and how does it differ from what people do now?

ÅWhat kinds of tools are available?

ÅHow is it being used?

ÅDoes it work?

5

Why do we need something new?

© Copyright Nancy Leveson, June 2011

Our current tools are all 40-65 years old
but our technology is very different today

1940 20101980 202019901950 1960 1970 2000

FMEA FTA

HAZOP

Bow Tie

(CCA)

FTA + ETA

ETA
üIntroduction of computer control

üExponential increases in complexity

üNew technology

üChanges in human roles

Assumes accidents caused

by component failures

© Copyright Nancy Leveson, June 2011

мΦ {ƻŦǘǿŀǊŜ ŘƻŜǎ ƴƻǘ άŦŀƛƭέ

Advantages

ïMachines that were physically impossible or impractical to build
become feasible

ïDesign can be changed without retooling or manufacturing

ïCan concentrate on steps to be achieved without worrying about how
steps will be realized physically

{ƻŦǘǿŀǊŜ ƛǎ ǇǳǊŜ ŘŜǎƛƎƴ ŀƴŘ ŘŜǎƛƎƴǎ Řƻ ƴƻǘ άŦŀƛƭέ

+ =
General

Purpose

Machine

Software
Special

Purpose

Machine

Software is simply the design of a machine abstracted

from its physical realization

© Copyright Nancy Leveson, June 2011

Itôs only a random

failure, sir! It will

never happen again.

What Failed Here?

ÅNavy aircraft were ferrying missiles from one location to
another.

ÅOne pilot executed a planned test by aiming at aircraft in front
and firing a dummy missile.

ÅNobody involved knew that the software was designed to
substitute a different missile if the one that was commanded
to be fired was not in a good position.

Å In this case, there was an antenna between the dummy
missile and the target so the software decided to fire a live
missile located in a different (better) position instead.

10

Accident with No Component
Failures

ÅMars Polar Lander

ïHave to slow down spacecraft to land safely

ïUse Martian atmosphere, parachute, descent
engines (controlled by software)

ïSoftware knows landed because of sensitive sensors on landing
legs. Cut off engines when determine have landed.

ï.ǳǘ άƴƻƛǎŜέ όŦŀƭǎŜ ǎƛƎƴŀƭǎύ ōȅ ǎŜƴǎƻǊǎ ƎŜƴŜǊŀǘŜŘ ǿƘŜƴ ǇŀǊŀŎƘǳǘŜ
opens. Not in software requirements.

ïSoftware not supposed to be operating at that time but
software engineers decided to start early to even out the load
on processor

ïSoftware thought spacecraft had landed and shut down descent
engines while still 40 meters above surface

11

Two Types of Accidents

ÅComponent Failure Accidents

ïSingle or multiple component failures

ïUsually assume random failure

ÅComponent Interaction Accidents

ïArise in interactions among components

ïRelated to complexity (coupling) in our system designs, which
leads to system design and system engineering errors

ïbƻ ŎƻƳǇƻƴŜƴǘǎ Ƴŀȅ ƘŀǾŜ άŦŀƛƭŜŘέ

ïExacerbated by introduction of computers and software but
problem is system design errors

12

Warsaw A320 Accident

ÅSoftware protected against activating thrust reversers when
airborne

ÅHydroplaning and other factors made the software think the
plane had not landed

ÅPilots could not activate the thrust reversers and ran off
runway into a small hill.

13

2. The role of software in accidents almost
always involves flawed requirements

ïIncomplete or wrong assumptions about operation of controlled
system or required operation of computer

ïUnhandled controlled-system states and environmental
conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

Ą Ą Ą

© Copyright Nancy Leveson, June 2011

2. The role of software in accidents almost
always involves flawed requirements

ïIncomplete or wrong assumptions about operation of controlled
system or required operation of computer

ïUnhandled controlled-system states and environmental
conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

Ą Ą Ą

© Copyright Nancy Leveson, June 2011

2. The role of software in accidents almost
always involves flawed requirements

ïIncomplete or wrong assumptions about operation of controlled
system or required operation of computer

ïUnhandled controlled-system states and environmental
conditions

hƴƭȅ ǘǊȅƛƴƎ ǘƻ ƎŜǘ ǘƘŜ ǎƻŦǘǿŀǊŜ άŎƻǊǊŜŎǘέ ƻǊ ǘƻ ƳŀƪŜ ƛǘ ǊŜƭƛŀōƭŜ ǿƛƭƭ
not make it safer under these conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

Ą Ą Ą

Boeing 787 Lithium Battery Fires

17
© Copyright John Thomas 2016

Models predicted 787 battery thermal

problems would occur once in 10

million flight hours (107 flight hours

using 4761 certification paradigm).

But two batteries overheated in just

two weeks (52,000 flight hours or

2.6 X 104 flight hours) [NTSB 2013]

Å A module monitors for smoke in the
battery bay, controls fans and ducts
to exhaust smoke overboard.

Å Power unit monitors for low battery
voltage, shut down various
electronics, including ventilation

Å Smoke could not be redirected
outside cabin

Å Shut down various electronics including
ventilation.

Å Smoke could not be redirected outside cabin

Boeing 787 Lithium Battery Fires

18

All software requirements were satisfied!
The requirements were unsafe

© Copyright John Thomas 2016

3. Software Allows Unlimited System Complexity

ÅComplexity (coupling) means can no longer

ïPlan, understand, anticipate, and guard against all undesired
system behavior

ïExhaustively test to get out all design errors

ÅContextdetermines whether software is safe

ïAriane 4 software was safe but whenreused in Ariane 5, the
spacecraft exploded

ïDAL, Rigor of Development, SIL will not ensure software is safe

ïNot possible to look at software alone and determine its
άǎŀŦŜǘȅέ

19

Safe or Unsafe?

Safety Depends on Context

Reliability is NOT equal to safety
in complex,

software-intensive systems

