Engineering a Safer and More Secure World

Nancy Leveson

MIT
– You’ve carefully thought out all the angles
– You’ve done it a thousand times
– It comes naturally to you
– You know what you’re doing, it’s what you’ve been trained to do your whole life.
– Nothing could possibly go wrong, right?
Think Again
Goal: Answer the Following Questions:

- Why do we need something new?
- What is STAMP and how does it differ from what people do now?
- What kinds of tools are available?
- How is it being used?
- Does it work?
Why do we need something new?
Our current tools are all 40-65 years old but our technology is very different today.

- Introduction of computer control
- Exponential increases in complexity
- New technology
- Changes in human roles

Assumes accidents caused by component failures
Software has Revolutionized Engineering (1)

1. Software does not “fail”

General Purpose Machine + Software = Special Purpose Machine

Software is simply the design of a machine abstracted from its physical realization

• Advantages
 – Machines that were physically impossible or impractical to build become feasible
 – Design can be changed without retooling or manufacturing
 – Can concentrate on steps to be achieved without worrying about how steps will be realized physically

© Copyright Nancy Leveson, June 2011
It’s only a random failure, sir! It will never happen again.
2. The role of software in accidents almost always involves flawed requirements

- Incomplete or wrong assumptions about operation of controlled system or required operation of computer
- Unhandled controlled-system states and environmental conditions

- Only trying to get the software “correct” or to make it reliable will not make it safer under these conditions
Software has Revolutionized Engineering (2)

2. The role of software in accidents almost always involves flawed requirements

- Incomplete or wrong assumptions about operation of controlled system or required operation of computer
- Unhandled controlled-system states and environmental conditions

• Only trying to get the software “correct” or to make it reliable will not make it safer under these conditions

© Copyright Nancy Leveson, June 2011
2. The role of software in accidents almost always involves flawed requirements

- Incomplete or wrong assumptions about operation of controlled system or required operation of computer
- Unhandled controlled-system states and environmental conditions

- Only trying to get the software “correct” or to make it reliable will not make it safer under these conditions
3. Software allows almost unlimited system complexity

- Can no longer
 - Plan, understand, anticipate, and guard against all undesired system behavior
 - Exhaustively test to get out all design errors

- Context determines whether software is safe
 - Ariane 4 software was safe but when reused in Ariane 5, the spacecraft exploded
 - “SIL” (safety integrity level) concept is technically meaningless
 - Not possible to look at software alone and determine “safety”
Accident with No Component Failure

• Navy aircraft were ferrying missiles from one location to another.

• One pilot executed a planned test by aiming at aircraft in front and firing a dummy missile.

• Nobody involved knew that the software was designed to substitute a different missile if the one that was commanded to be fired was not in a good position.

• In this case, there was an antenna between the dummy missile and the target so the software decided to fire a live missile located in a different (better) position instead.
Accident with No Component Failures

- Mars Polar Lander loss
 - Have to slow down spacecraft to land safely
 - Use Martian atmosphere, parachute, descent engines (controlled by software)
 - Software knows landed because of sensitive sensors on landing legs. Cut off engines when determine have landed.
 - But “noise” (false signals) by sensors generated when parachute opens. Not in software requirements.
 - Software not supposed to be operating at that time but software engineers decided to start early to even out load on processor
 - Software thought spacecraft had landed and shut down descent engines
Types of Accidents

• Component Failure Accidents
 – Single or multiple component failures
 – Usually assume random failure

• Component Interaction Accidents
 – Arise in interactions among components
 – Related to complexity
 – Exacerbated by introduction of computers and software but problem is system design errors
A

Unreliable but not unsafe (FMEA)

B

Unsafe but not unreliable (???)

C

Unreliable and unsafe (FMEA, FTA, HAZOP))

Confusing Safety and Reliability

Preventing Component or Functional Failures is NOT Enough
4. Software changes the role of humans in systems

Typical assumption is that operator error is cause of most incidents and accidents

– So do something about operator involved (admonish, fire, retrain them)

– Or do something about operators in general
 • Marginalize them by putting in more automation
 • Rigidify their work by creating more rules and procedures
A Systems View of Operator Error

• Operator error is a symptom, not a cause

• All behavior affected by context (system) in which occurs
 – Role of operators is changing in software-intensive systems as is the errors they make
 – Designing systems in which operator error inevitable and then blame accidents on operators rather than designers

• To do something about operator error, must look at system in which people work:
 – Design of equipment
 – Usefulness of procedures
 – Existence of goal conflicts and production pressures

• Human error is a symptom of a system that needs to be redesigned
Human factors concentrates on the "screen out"

Engineering concentrates on the "screen in"
Not enough attention on integrated system as a whole
What is STAMP and how does it differ from what people do now?
The Problem is Complexity

Ways to Cope with Complexity

• Analytic Reduction

• Statistics

• Systems Theory and Systems Engineering
Analytic Reduction

- Divide system into distinct parts for analysis
 - Physical aspects → Separate physical or functional components
 - Behavior → Events over time
 - Examine parts separately and later combine analysis results
 - Assumes such separation does not distort phenomenon
 - Each component or subsystem operates independently
 - Components act the same when examined singly as when playing their part in the whole
 - Events not subject to feedback loops and non-linear interactions
Traditional Approach to Safety

- Reductionist
 - Divide system into components
 - Assume accidents are caused by component failure
 - Identify chains of directly related physical or logical (functional) component failures that can lead to a loss
 - Evaluate reliability of components separately and later combine analysis results into a system reliability value

Note: Assume randomness in the failure events so can derive probabilities for a loss

- Software and humans do not satisfy this assumption
Accident Causality Models

• Underlie all our efforts to engineer for safety
• Explain why accidents occur
• Determine the way we prevent and investigate accidents
• May not be aware you are using one, but you are
• Imposes patterns on accidents

“All models are wrong, some models are useful”

George Box
Heinrich’s Domino Model of Accident Causation (1932)

- Social Environment and Inherited Behavior (e.g., alcoholism)
- Fault of the person (carelessness, bad temper, recklessness, etc)
- Unsafe act or condition – Performing a task without the appropriate PPE
- Accident
- Injury – outcome of some accidents but not all

MISTAKES OF PEOPLE
Domino “Chain of events” Model

DC-10:

Cargo door fails → Causes → Floor collapses → Causes → Hydraulics fail → Causes → Airplane crashes

Chain of Failure Events

© Copyright Nancy Leveson, June 2011
Variants of Domino Model

• Bird and Loftus (1976)
 – Lack of control by management, permitting
 – Basic causes (personal and job factors) that lead to
 – Immediate causes (substandard practices/conditions/errors), which are the proximate cause of
 – An accident or incident, which results in
 – A loss.

• Adams (1976)
 – Management structure (objectives, organization, and operations)
 – Operational errors (management or supervisor behavior)
 – Tactical errors (caused by employee behavior and work conditions)
 – Accident or incident
 – Injury or damage to persons or property.
Reason Swiss Cheese (1990)
Accidents as Chains of Failure Events

• Forms the basis for most safety engineering and reliability engineering analysis:

 FTA, PRA, FMEA/FMECA, Event Trees, FHA, etc.

 and design (concentrate on dealing with component failure):

 Redundancy and barriers (to prevent failure propagation),
 High component integrity and overdesign,
 Fail-safe design,
 (humans) Operational procedures, checklists, training,
Chain-of-events example

Moisture → Corrosion → Weakened metal → Operating pressure

- Reduce pressure as tank ages.

AND

- Tank rupture
- Fragments projected

OR

- Equipment damaged
 - Locate tank away from equipment susceptible to damage.

- Personnel injured
 - Keep personnel from vicinity of tank while it is pressurized.

Use desiccant to keep moisture out of tank.
Use stainless steel or coat of plate carbon steel to prevent contact with moisture.
Overdesign metal thickness so corrosion will not reduce strength to failure point during foreseeable lifetime.
Use burst diaphragm to rupture before tank does, preventing more extensive damage and fragmentation.
Provide mesh screen to contain possible fragments.
Standard Approach does not Handle

- Component interaction accidents
- Systemic factors (affecting all components and barriers)
- Software and software requirements errors
- Human behavior (in a non-superficial way)
- System design errors
- Indirect or non-linear interactions and complexity
- Migration of systems toward greater risk over time (e.g., in search for greater efficiency and productivity)
We Need Something New

• New levels of complexity, software, human factors do not fit into reliability-oriented approaches to safety.

• Trying to shoehorn new technology and new levels of complexity into old methods will not work.
Systems Theory

- Developed for systems that are
 - Too complex for complete analysis
 - Separation into (interacting) subsystems distorts the results
 - The most important properties are emergent
 - Too organized for statistics
 - Too much underlying structure that distorts the statistics
 - New technology and designs have no historical information

- First used on ICBM systems of 1950s/1960s

- Basis for System Engineering and System Safety
Systems Theory (2)

• Focuses on systems taken as a whole, not on parts taken separately

• Emergent properties
 – Some properties can only be treated adequately in their entirety, taking into account all social and technical aspects
 “The whole is greater than the sum of the parts”
 – These properties arise from relationships among the parts of the system
 How they interact and fit together
Emergent properties (arise from complex interactions)

Safety and security are emergent properties

Process components interact in direct and indirect ways
Controller

Controlling emergent properties (e.g., enforcing safety constraints)
- Individual component behavior
- Component interactions

Process components interact in direct and indirect ways

Control Actions

Feedback
Controller

Controlling emergent properties (e.g., enforcing safety constraints)
- Individual component behavior
- Component interactions

Air Traffic Control:
Safety
Throughput

Process components interact in direct and indirect ways
Controls/Controllers Enforce Safety Constraints

- Power must never be on when access door open
- Two aircraft/automobiles must not violate minimum separation
- Aircraft must maintain sufficient lift to remain airborne
- Integrity of hull must be maintained on a submarine
- Toxic chemicals/radiation must not be released from plant
- Workers must not be exposed to workplace hazards
- Public health system must prevent exposure of public to contaminated water and food products
- Pressure in a offshore well must be controlled
Controls/Controllers Enforce Safety Constraints (2)

- Runway incursions and operations on wrong runways or taxiways must be prevented
- Bomb must not detonate without positive action by authorized person
- Submarine must always be able to blow the ballast tanks and return to surface
- Truck drivers must not drive when sleep deprived
- Fire must not be initiated on a friendly target

These are the High-Level Functional Safety Requirements to Address During Design

© Copyright Nancy Leveson, June 2011
A Broad View of “Control”

Component failures and unsafe interactions may be “controlled” through design
 (e.g., redundancy, interlocks, fail-safe design)

or through process
 – Manufacturing processes and procedures
 – Maintenance processes
 – Operations

or through social controls
 – Governmental or regulatory
 – Culture
 – Insurance
 – Law and the courts
 – Individual self-interest (incentive structure)
Role of Process Models in Control

• Controllers use a process model to determine control actions

• Accidents often occur when the process model is incorrect

• Four types of unsafe control actions:
 • Control commands required for safety are not given
 • Unsafe ones are given
 • Potentially safe commands given too early, too late
 • Control stops too soon or applied too long
Identifying Causal Scenarios for Unsafe Control

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Process Model (inconsistent, incomplete, or incorrect)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)
STAMP (System-Theoretic Accident Model and Processes)

- Defines safety as a control problem (vs. failure problem)
- Applies to very complex systems
- Includes software, humans, operations, management
- Based on general systems theory and systems engineering
- Expands the traditional model of the accident causation (cause of losses)
 - Not just a chain of directly related failure events
 - Losses are complex processes
Safety as a Dynamic Control Problem (STAMP)

- Hazards result from lack of enforcement of safety constraints in system design and operations.

- Goal is to control the behavior of the components and systems as a whole to ensure safety constraints are enforced in the operating system.

- A change in emphasis:
 - “prevent failures”
 - “enforce safety/security constraints on system behavior”

 (note that enforcing constraints might require preventing failures or handling them but includes more than that)
Accident Causality Using STAMP
What kinds of tools are available?
STAMP: Theoretical Causality Model
STPA: System-Theoretic Process Analysis

• A top-down, system engineering analysis technique

• Identifies safety (or X) constraints (system and component requirements)

• Identifies scenarios leading to violation of constraints (requirements); use results to design or redesign system to be safer

• Can be used on technical design and organizational design

• Supports a safety-driven design process where
 – Analysis influences and shapes early design decisions
 – Analysis iterated and refined as design evolves

• Easily integrates into system engineering and MBSE tools

© Copyright Nancy Leveson, June 2011
Example U.S. BDMS (for MDA)

- Non-advocate safety assessment just prior to deployment and field testing
- Hazard was inadvertent launch
- Analysis done by two people over 5 months
- Deployment and testing held up for 6 months because so many scenarios identified for inadvertent launch. In many of these scenarios:
 - All components were operating exactly as intended
 - Complexity of component interactions led to unanticipated system behavior
- STPA also identified component failures that could cause inadequate control (most analysis techniques consider only these failure events)
Safety Control Structure for FMIS

- Command Authority
 - Exercise Results
 - Readiness Status
 - Wargame Results
 - Doctrine
 - Engagement Criteria
 - Training
 - TTP
 - Workarounds

- Early Warning System
 - Status Request
 - Launch Report
 - Status Report
 - Heartbeat

- Radar
 - Radar Tasking
 - Readiness Mode Change
 - Status Request
 - Track Data

- Operators
 - Operational Mode
 - Readiness State
 - System Status
 - Track Data
 - Weapon and System Status

- Fire Control
 - Fire Enable
 - Fire Disable
 - Fire Control
 - Interceptor
 - Simulator

- Launcher
 - Launch Position
 - Stow Position
 - Launch Report

- Launch Station
 - Command Responses
 - System Status
 - Launch Report

- Flight Computer
 -软件更新
 - Arm
 - Safe
 - Ignite

- Interceptor
 - H/W

Acknowledgements
- BIT Results
- Health & Status

Breakwires
- Safe & Arm Status
- Voltages

Exercise Results
- Readiness Status
- Wargame Results

Safety Control Structure for FMIS

© Copyright Nancy Leveson, June 2011
Example Hazard Scenarios Found

• Operator could do something strange but possible at same time that radars detect a potential (but not dangerous) threat
 – Could lead to software issuing an instruction to enable firing an interceptor at the non-threat
 – Problem was a missing software requirement to handle this case

• Identified timing conditions that could lead to incorrectly launching an interceptor

• Simulator data could be taken as real data
Automating STPA (John Thomas)

- Requirements can be derived automatically (with some user guidance) using mathematical foundation
- Allows automated completeness/consistency checking
CAST: Accident Analysis Technique

- Provides a framework or process to assist in understanding the entire accident process and identifying systemic factors
- Get away from blame (“who”) and shift focus to “why” and how to prevent in the future
- Reduces hindsight bias
- Goal is to determine
 1. Why people behaved the way they did
 2. Weaknesses in the safety control structure that allowed the loss to occur
70-80% of Safety Decisions [Frola & Miller, 1984]
70-80% of Safety Decisions [Frola & Miller, 1984]

Effectiveness, Cost

Concept | Requirements | Design | Build | Operate

STECA
STPA

Preliminary Hazard Analysis
System & Sub-system Hazard Analysis
Accident Analysis

Ability to impact cost and performance
Cost of design changes
System Theoretic Early Concept Analysis
STECA (Dr. Cody Fleming)

ConOps

Model Generation

Model-Based Analysis

Unspecified Assumptions

Missing, inconsistent, incomplete information

Vulnerabilities, risks, tradeoffs

System, software, human requirements (including information rqtms.)

Architectural and design analysis to eliminate and control hazards

© Copyright Nancy Leveson, June 2011
Applies to Security Too (AF Col. Bill Young)

• Today currently primarily focus on tactics
 – Cyber security often framed as battle between adversaries and defenders (tactics)
 – Requires correctly identifying attackers motives, capabilities, targets

• Can reframe problem in terms of strategy
 – Identify and control system vulnerabilities (vs. reacting to potential threats)
 – Top-down strategy vs. bottom-up tactics approach
 – Tactics tackled later
Integrated Approach to Safety and Security:

• Safety: prevent losses due to *unintentional actions* by benevolent actors

• Security: prevent losses due to *intentional actions* by malevolent actors

• Key difference is *intent*

• Common goal: loss prevention

 – Ensure that critical functions and services provided by networks and services are maintained

 – New paradigm for safety will work for security too

 • May have to add new causes, but rest of process is the same

 – A top-down, system engineering approach to designing safety and security into systems

© Copyright Nancy Leveson, June 2011
Build safety and security into system from beginning

- Safety/Secure Systems Thinking
- System Safety/Security Requirements
- Systems Engineering
- Cyber Security/Safety “Bolt-on”
- Attack/Accident Response
How is it being used?
Does it work?
Is it useful?
Being Used on Nearly Every Safety-Critical System

- Spacecraft
- Aircraft /Air Traffic Control
- UAVs (RPAs)
- Defense
- Automobiles
- Medical Devices and Hospital Safety
- Chemical plants
- Oil and Gas
- Nuclear and Electrical Power
- CO₂ Capture, Transport, and Storage
- Ships
- Robotic Manufacturing
- etc.
Uses Beyond Traditional System Safety

- Quality
- Producibility (of aircraft)
- Nuclear security
- Banking and finance
- Engineering optimization
- Organizational culture
- Workplace safety
Is it Effective?

• In all cases where a comparison was made (to FTA, HAZOP, FMEA, ETA, etc.)
 – STPA found the same hazard causes as the old methods
 – Plus it found more causes than traditional methods
 – In some evaluations, found accidents that had occurred that other methods missed (e.g., EPRI)
 – Cost was orders of magnitude less than the traditional hazard analysis methods
 – Same results for security evaluations by CYBERCOM
Summary

• More comprehensive and powerful approach to safety (and security and any emergent property)

• Includes social, organizational, operator, software-related factors

• Top-down system engineering approach

• Handles much more complex systems than traditional safety analysis approaches and costs less
Paradigm Change

- Does not imply what previously done is wrong and new approach correct
- Einstein:
 “Progress in science (moving from one paradigm to another) is like climbing a mountain”

As move further up, can see farther than on lower points
Paradigm Change (2)

New perspective does not invalidate the old one, but extends and enriches our appreciation of the valleys below.

Value of new paradigm often depends on ability to accommodate successes and empirical observations made in old paradigm.

New paradigms offer a broader, rich perspective for interpreting previous answers.
Nancy Leveson, *Engineering a Safer World: Systems Thinking Applied to Safety*

MIT Press, January 2012