

Unmanned Aircraft Integration into the National Airspace: A Cognitive Systems Engineering Framework for Safety Model Development.

Kip Johnson, Maj, USAF Prof Nancy Leveson, Research Advisor

Presentation approved for public release. Case 88ABW-2015-1073

March 24, 2015 Massachusetts Institute of Technology Cambridge, MA 02139

Disclaimer

- This material is based upon work supported by the United States Air Force under Contract No. FA8721-05-C-0002.
- Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force.
- Presentation approved for public release.
 - Case 88ABW-2015-1073

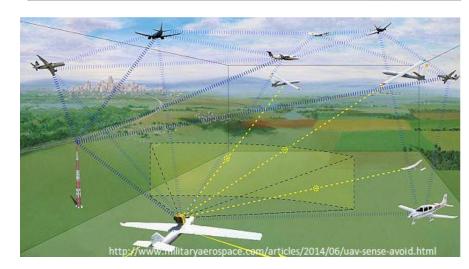
Overview

- Introduction
 - Unmanned Aircraft Systems Integration
 - The problems
 - The research questions
- Background
 - What is Cognitive Systems Engineering (CSE)
 - What is the Abstraction Hierarchy
- Results and Discussion
 - Abstraction Hierarchy applied to STAMP-STPA
 - Safety Control Structure development
 - Toward safety model validation
- Conclusions
 - Use of CSE for Complex Sociotechnical System safety design
 - Future research

Introduction

Problem description

• UAS integration into the Nat'l airspace.


- Prevent mid-air and ground collisions.
- Design the detect-and-avoid technology.
- Lack a framework for designing safe UAS integration into the NAS.*

• Challenges.

- Early lifecycle phase.
 - Ambiguous architecture.
 - Lack of useful data.
 - Sweeping change for air transportation system.
- Complex sociotechnical system.
 - Traditional reliability safety methods inadequate.
 - Modeling and simulation limited use for safety design.
- Human-designed system. Coping with complexity.

*U.S. H.R. 113th Congress, "Report 113-464. Departments of Transportation, and Housing and Urban Development, and Related Agencies Appropriations Bill, 2015," 2014. *U.S. Department of Transportation, "FAA Faces Significant Barriers to Safely Integrate Unmanned Aircraft Systems into the National Airspace System," Washington, DC, 2014.

© 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Introduction

The question

- How to develop an *adequate* qualitative model, the safety control structure?
 - Propose. Use of Cognitive Systems Engineering, specifically the Abstraction Hierarchy (Rasmussen, 1986) can augment the development of safety models and improve model validation.*

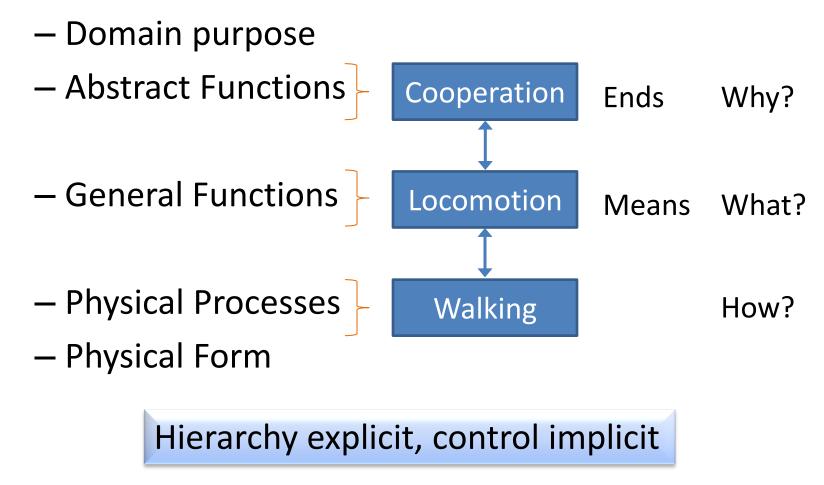
^{*}Rasmussen, J., 1986. Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering, New York, NY: North-Holland; Elsevier Science Inc.

- Introduction
- Background
 - What is Cognitive Systems Engineering
 - What is the Abstraction Hierarchy
- Results and Discussion
- Conclusions

Cognitive Systems Engineering (CSE)

- "The central tenet of CSE is that an MMS [man-machine ulletsystem] needs to be conceived, designed, analyzed and evaluated in terms of a cognitive system." p. 585*
- Abstraction Hierarchy. Abstraction-decomposition system characterization.**
 - A framework to organize information, to cope with complexity in system design.
 - Abstraction levels.
 - Varying hierarchical levels, from system purpose to physical realization.
 - Abstractions related by a means-ends relationship.
 - Decomposition.
 - From whole system to components.

*Hollnagel, E. & Woods, D., 1983. Cognitive Systems Engineering: New Wine in New Bottles. International Journal of Man-machine Studies, 18, pp.583-600.

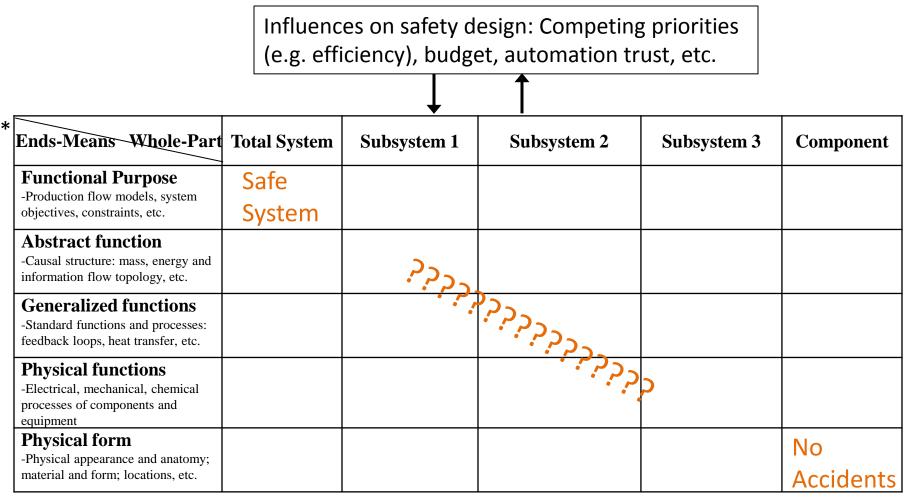

**Rasmussen, J., 1985. The Role of Hierarchical Knowledge Representation in Decisionmaking and System Management. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(2), pp.234–243.

Background

System abstraction hierarchy example*

*Rasmussen, J., Pejtersen, A.M. & Goodstein, L.P., 1994. Cognitive Systems Engineering M. Helander, ed., New York, NY: John Wiley & Sons, Inc.

© 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



- Introduction
- Background
- Results and Discussion
 - Abstraction Hierarchy applied to STAMP-STPA
 - Safety Control Structure development
 - Toward safety model validation
- Conclusions

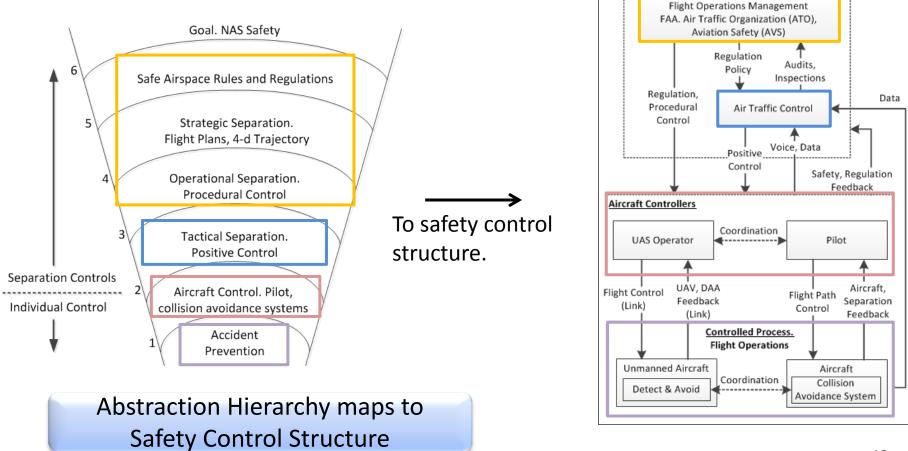
Abstraction Hierarchy applied to Safety Driven Design of complex sociotechnical systems (CSS)

*Table adapted from: Rasmussen, J., 1985. The Role of Hierarchical Knowledge Representation in Decisionmaking and System Management. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-15(2), pp.234–243.

Abstraction Hierarchy applied to Safety Driven Design of the Air Transportation System

Ends-Means Whole-Part	Total System Nat'l Airspace	Airspace Management	Local airspace control	Individual aircraft control	Component Aircraft
Functional purpose	System goal. Safe integrated flight operations; accident free	Safe NAS flight operations	Safe NAS flight operations	Safe aircraft control	Safe encounter
Abstract function	Rules & Regs. NAS req'ts, architecture, operations	Aggregate mass flow	Local mass flow	Aircraft energy control	Mass separation
Generalized functions		4-d flight planning (strategic control)	Communications	Lift, drag, power control	Collision free flight
Physical functions		Procedural control	Air Traffic Control, decision support, communications functions	Pilot/operator, decision support, communications (C2 Link)	Safe aircraft trajectory
Physical form					No mid-air or ground collisions

Federal (Congress, DOT, FAA).

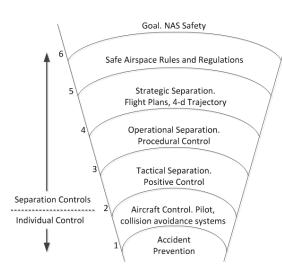

Airspace Controllers

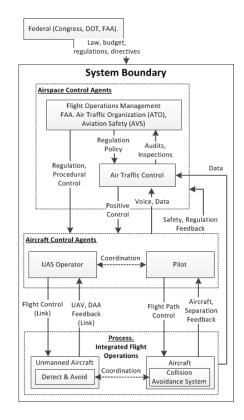
Law, budget, regulations, directives

System Boundary

Developing the *Safety Control Structure*

• From abstraction hierarchy.


© 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



- Validation. Model is adequate for safety analysis.
 - Does the model represent the intended system?
 - In STAMP. The intended functional control, the controlled process, and interactions represented?

Ends-Means Whole-Part	Total System Nat'l Airspace	Airspace Management	Local airspace control	Individual aircraft control	Component
Functional purpose	System goal. Safe integrated flight operations; accident free	Safe NAS flight operations	Safe NAS flight operations	Safe aircraft control	Safe encounter
Abstract function	Rules & Regs. NAS req'ts, architecture, operations	Aggregate mass flow	Local mass flow	Aircraft energy control	Mass separation
Generalized functions		4-d flight planning (strategic control)	Communications	Lift, drag, power control	Collision free flight
Physical functions		Procedural control	Air Traffic Control, decision support, communications functions	Pilot/operator, decision support, communications (C2 Link)	Safe aircraft trajectory
Physical form					No mid-air or ground collisions

Abstraction-hierarchy useful for safety design. Rigorous approach. May improve model validation vs model development alone.

- National Airspace Safety. STAMP-STPA applied to UAS integration.
 - Top-down goal: prevent mid-air and ground collisions.

SYSTEM CONSTRAINTS

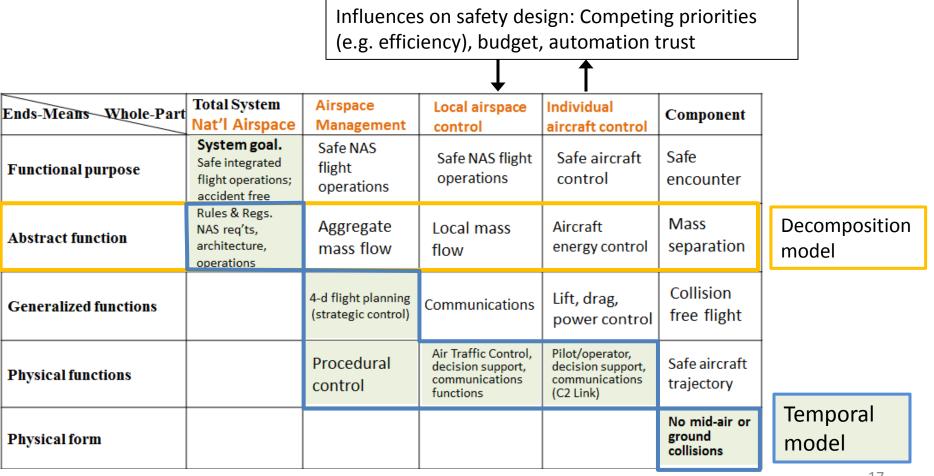
UAS operations shall not lead to loss of minimum separation requirements.

UAS operations shall not induce or contribute to a controlled flight into terrain maneuver.

UAS operations shall not induce or contribute to loss of aircraft controlled flight. -Aerodynamic/Structural limits, UAS C2 lost link disruptions

- ~65 High Level NAS safety requirements (STPA Step 1)
- ~68 Detect & Avoid safety/certification requirements (STPA Step 2)
- Draft publication

- Introduction
- Background
- Results and Discussion
- Conclusions
 - Use of cognitive systems engineering for sociotechnical system safety design
 - Future research



- Research question. How to develop an *adequate* qualitative model, the safety control structure?
 - Demonstrated use of Abstraction Hierarchy for understanding the Air Transportation system.
 - Demonstrated the Abstraction Hierarchy mapping to the safety control structure.
- Abstraction Hierarchy able to rigorously guide safety model development; toward model validation.

Is the abstraction-decomposition framework useful for designing your sociotechnical system, for coping with complexity?

Acknowledgements

- The authors thank Dr. Roland Weibel, MIT Lincoln Laboratory Technical Staff, for research collaboration and technical insights.
- Contact information:
 - Kip Johnson: johnskip@mit.edu
 - Prof Nancy Leveson: <u>leveson@mit.edu</u>