
A Tool-Based STPA Process
John Thomas and Dajiang Suo

Outline

• Formal approach to STPA

• Current tool-based STPA process

• New tool-based STPA process

STPA
(System-Theoretic Process Analysis)

• System engineering
foundation
– Define accidents,

hazards
– Create control

structure

• Step 1: Identify
unsafe control
actions

• Step 2: Identify
accident causal
scenarios

3

Controlled
process

Control
Actions

Feedback

Controller

(Leveson, 2012) © Copyright John Thomas 2014

Example UCA:
“Operator provides open train door command when train is moving”

Structure of an Unsafe Control Action

4

Example UCA:
“Operator provides open train door command when train is moving”

Train Door

Control
Actions

Operator
Source Controller

Type

Control Action
Context

Context

Train motion Stopped
Moving

Train location At platform
Not Aligned

Not providing
causes hazard

Providing
causes
hazard

Incorrect
Timing/
Order

Stopped
Too Soon /
Applied too

long

Open train
door

? ? ? ?

Formalizing Unsafe Control Actions

5
*Design decision: In this situation, evacuate passengers to other cars. Meanwhile, stop the train and then open doors.

Controller Action
Type

Control Action Train
Motion

Emergency Train Position Hazardous?

Operator Provides Door open
command

Moving No (doesn’t
matter)

Yes

Operator Provides Door open
command

Moving Yes (doesn’t
matter)

Yes*

Operator Provides Door open
command

Stopped Yes (doesn’t
matter)

No

Operator Provides Door open
command

Stopped No Not at platform Yes

Operator Provides Door open
command

Stopped No At platform No

Example UCA:
“Operator provides open train door command when train is moving”

Unsafe Control Actions

Door open command provided while train is moving and there is no emergency

Door open command provided too late while train is stopped and emergency exists

Door open command provided while train is stopped, no emergency, and not at
platform

Door open command provided while train is moving and emergency exists

Door open command not provided while train is stopped and emergency exists

Door open command not provided while doors are closing on someone and train is
stopped

6

Controller Action Type Control Action Train Motion Emergency Train Position Hazardous?

Operator Provides Door open cmd Moving No (doesn’t matter) Yes

Operator Provides Door open cmd Moving Yes (doesn’t matter) Yes*

Operator Provides Door open cmd Stopped Yes (doesn’t matter) No

Operator Provides Door open cmd Stopped No Not at platform Yes

Operator Provides Door open cmd Stopped No At platform No

Much of this can be automated!

Automating STPA

7

Controller Action
Type

Control Action Train
Motion

Emergency Train Position Hazardous?

Operator Provides Door open
command

Moving No (doesn’t
matter)

Yes

Operator Provides Door open
command

Moving Yes (doesn’t
matter)

Yes*

Operator Provides Door open
command

Stopped Yes (doesn’t
matter)

No

Operator Provides Door open
command

Stopped No Not at platform Yes

Operator Provides Door open
command

Stopped No At platform No

Automatically generated
(from control structure and PMVs)

Generated from
simple rules

(from engineers)

Detecting conflicts

• Can automatically check consistency, search
for conflicts

Control Action Train
Motion

Emergency Hazardous?

Door open command Moving Yes Yes*

Control Action Train
Motion

Emergency Hazardous?

Door open command
not provided

Moving Yes Yes*

• Example: Conflict between opening the door
vs. not opening the door

8

Generating safety requirements

Provide 'Open Doors' command

Door State = Doors not closing on person

Doors closing on person T

Train Position = Aligned with platform T

Not aligned with platform

Train Motion = Stopped T T T

Train is moving

Emergency = No emergency

Emergency exists T

9

• Example: Generated black-box model for door
controller . Executable. Behavior required

for safety
Behavior required

for function

Open Doors =
(Train Position in-state Aligned) ∧ (Train Motion in-state Stopped) ∨ (Train Motion in-state Stopped) ∧
(Emergency in-state exists) ∨ (Door State in-state closing on person) ∧ (Train Motion in-state Stopped)

Tool-assisted Process

Tool-assisted process

Process Overview

1. Identify hazards

2. Create basic control structure

3. Basic UCA table

4. Identify process model variables

5. Define initial UCA rules

6. Identify conflicts, overlaps, and missing
rules

7. Analyze conflicts

8. Analyze overlapping rules

9. Verify missing rules

10. Create safety constraints and requirements

11. Perform STPA Step 2

• System engineering
foundation
– Define hazards

– Create control
structure

• Step 1: Identify
unsafe control
actions

• Step 2: Identify
accident causal
scenarios

Tool-assisted process

Process
Overview

1. Identify hazards
2. Create safety

Control Structure

3. Basic UCA
Table

4. Identify Process
Model Variables

5. Define initial
UCA rules

6. Identify conflicts,
overlaps, and missing rules

7. Analyze Conflicts
8. Overlapping rules
9. Verify Missing Rules

10. Create safety
constraints
and requirements

11. Perform STPA
Step 2

STPA Step 2: Identify Accident

Causal Scenarios

Tool
Assistance

Human

Identify hazards, controllers,
controlled processes, control
actions, feedbacks.

• Add hazard labels
with tool editor

• Draw control
structure in tool
editor

Brainstorm,
fill in template

Extract PMVs from
UCAs in basic
table

• Add PMV
labels

• Generate
context
table

Translate basic
UCAs into Rules

Define rules
with
Rule editor

Identified automatically
by tool

Resolve conflicts,
check overlaps,
check missing UCAs

Update or add new
rules as needed

Automatically
create safety
constraints and
requirements

Causes of UCA
Causes of safe
control action not
followed

STPA Step 1System Engineering
Foundations

The Architecture of an STPA tool

Analysis results in XML

(Interoperation with SpecTRM)

UCA Editor
(Context Table)

2-D Graphical Editor
(Hazard & Safety control structure)

Rule Editor

Eclipse Platform

JFace

Workbench

SWT

Platform Runtime

STPA Tool

*The architecture of Eclipse platform is taken from eclipse.org

Java
Development

Tooling

A Toolset for Supporting STPA and Requirement Generation

1. Add hazard labels
4. Generate Context Table

7. Automatically create safety Requirement (SpecTRM-RL)

5. Define Rules with rule editor

2. Create
safety
control
structure

3. Add PMVs

6. Identify conflicts, overlaps and missing
UCAs

Feedback from “beta” testing

• I want to change the control structure in the
middle of the analysis

– Add new controller responsibility

– Change a control action

– Change feedback / process model variable

– Etc.

Challenge(1):
Are old rules still valid if the user changes PMV labels?

Process
Overview

1. Identify hazards
2. Create safety

Control Structure

3. Basic UCA
Table

4. Identify Process
Model Variables

System Engineering
Foundations

STPA Step 1

5. Define initial
UCA rules

6. Identify conflicts,
overlaps, and missing rules

7. Analyze Conflicts
8. Overlapping rules
9. Verify Missing Rules

10. Create safety
constraints
and requirements

11. Perform STPA
Step 2

STPA Step 2: Identify Accident

Causal Scenarios

Tool
Assistance

Human

Identify hazards, controllers,
controlled processes, control
actions, feedbacks.

• Add hazard labels
with tool editor

• Draw control
structure in tool
editor

Brainstorm,
fill in template

Extract PMVs from
UCAs in basic
table

Add PMV labels
inside each
controller

Translate basic
UCAs into Rules

Add rules with
Rule editor

Identified automatically
by tool

Resolve conflicts,
check overlaps,
check missing UCAs

Update or add new
rules as needed

Automatically
create safety
constraints and
requirements

Causes of UCA
Causes of safe
control action not
followed

Tool Support for Modifying PMVs
Example: Add PMVs

Export Rules to
external files

Add/delete
PMVs

Import Rules from
external files

New PMVs and values in controllerOld PMVs and values in controller

Old Rule related to Old PMVs
New Rule related New PMVs

Safety Control Structure Safety Control Structure

Rule definition

Rule definition

Before Adding PMVs After Adding PMVs

Are old rules still valid if the user changes PMV labels?
Example: Add PMVs

Before adding PMVs After adding PMVs

Observations:
• Contexts have been changed
• More Rules may become relevant
• New Conflicts are identified

Add/delete
PMVs

Safety Control Structure

Context Table

Rule definition

