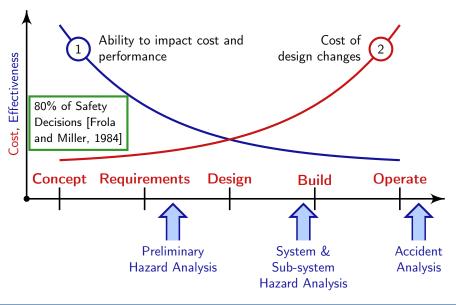
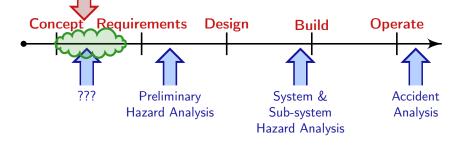
Systems-Theoretic Early Concept Analysis (and Development)


Cody H. Fleming

23 March 2015 4th STAMP Workshop Systems Engineering Research Lab


Motivation

General Challenges

- no specification
- informal documentation
- concept of operations ≡ "ConOps"

Goals

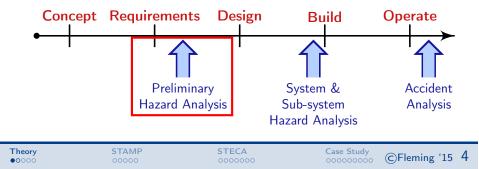
1. use rigorous, systematic tools for identifying hazardous scenarios and undocumented assumptions

2. supplement existing (early) SE activities such as requirements definition, architectural and design studies

Especially when tradespace includes: *human* operation, *automation* or decision support tools, and the *coordination* of decision making agents

Table of Contents

1. Theory


2. STAMP

3. STECA

4. Case Study

Theory 00000	STAMP 00000	STECA 0000000	Case Study	©Fleming '15	

Current State of the Art

Current State of the Art

Preliminary Hazard Analysis

PROGRAM: DATE: ENGINEER: PAGE:						
ITEM	HAZARD COND	CAUSE	EFFECTS	RAC	ASSESS- MENTS	RECOMM- ENDATIONS
Assigned number	List the nature of the condition	Describe what is causing the stated condition to exist	If allowed to go uncorrected, what will be the effect or effects of the hazardous condition	Hazard Level assign- ment	Probability, possibility of occurrence: -Likelihood -Exposure -Magnitude	Recommended actions to eliminate or control the hazard

[Vincoli, 2005]

4

Theory	STAMP	STECA	Case Study	©Fleming '15
0000	00000	000000	000000000	C)Fleming 15

Limitations of PHA

PHA tends to identify the following hazard causes:

Causes	Causes	Causes
Equipment Failure	Design error, coding error, insufficient software testing, software operating system problem	Human error

[JPDO, 2012]

This is true:

ALL accidents are caused by hardware failure, software flaws, or human error

 But is the information coming from PHA useful for systems engineering?

 Theory
 STAMP

 STAMP
 STECA

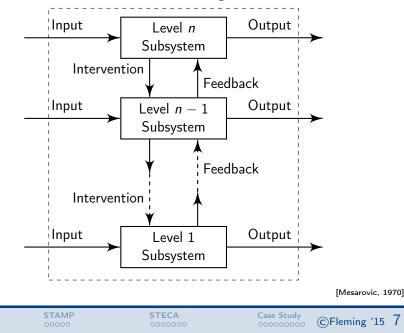
 Case Study
 CFleming '15 5

Emergence

Organized complexity as a hierarchy of levels, "each more complex than the one below, a level being characterized by emergent properties which do not exist at the lower level" [Checkland, 1999]

[Business Korea, 2014]

©Fleming '15 6


Theory	
00000	

STAMP

STECA

Case Study

Hierarchy

Theory

00000

Process Control

Four conditions are required for process control:

- 1. Goal condition: the controller must have a goal or goals
- 2. *Action* condition: the controller must be able to affect the state of the system, typically by means of an actuator or actuators
- 3. Model condition: the controller must contain a model of the system
- 4. *Observability* condition: the controller must be able to ascertain the state of the system, typically by feedback from a sensor

[Ashby, 1957]

Theory ○○○○●	STAMP 00000	STECA	Case Study	©Fleming '15 8

Table of Contents

1. Theory

2. STAMP

3. STECA

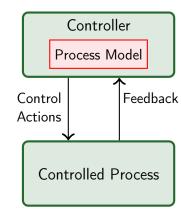
4. Case Study

Theory STAMP STECA Case Study 000000 000000 00000000 CFleming '15	

Safety \Rightarrow Control Problem

Systems-Theoretic Accident Model and Process

• Accidents are more than a chain of events, they involve complex dynamic processes



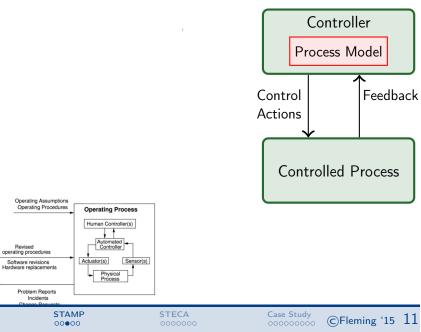
• Treat accidents as a control problem, not a failure problem

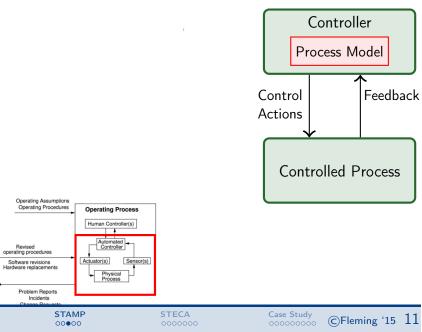
• Prevent accidents by enforcing constraints on component behavior and interactions

Theory 00000	STAMP •0000	STECA	Case Study	©Fleming '15 9
-----------------	-----------------------	--------------	------------	----------------

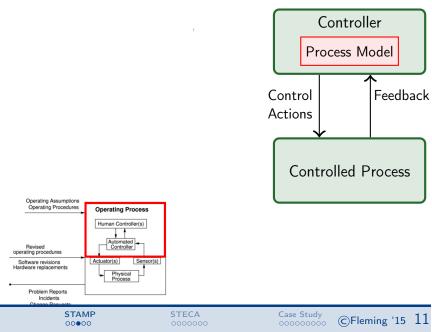
- Controllers use a process model to determine control actions
- Accidents often occur when the process model is incorrect
- Four types of unsafe control actions:
 - 1. Not providing the control action causes the hazard
 - 2. **Providing** the control action causes the hazard
 - 3. The **timing** or **sequencing** of control actions leads to the hazard
 - 4. The **duration** of a continuous control action, i.e., too short or too long, leads to the hazard.

Better model of both software and human behavior Explains software errors, human errors, interaction accidents,...

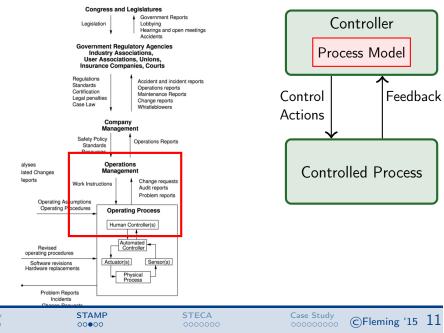

Theory 00000 STAMP 00000 STECA


Case Study

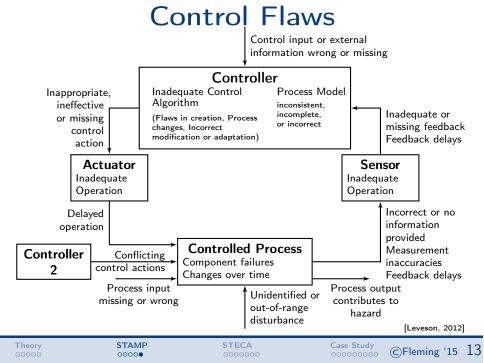
©Fleming '15


10

Theory



Theory


Theory

Unsafe Control Actions

Control Action	Not Providing Causes Hazard	Providing Causes Hazard	Wrong Timing/Order Causes Hazard	Stopped Too Soon/Applied Too Long
Execute ITP		ITP executed when not approved ITP executed when ITP criteria are not satisfied ITP executed with incorrect climb rate, final altitude, etc	ITP executed too soon before approval ITP executed too late	
Abnormal Termination of ITP	FC continues with maneuver in dangerous situation	FC aborts unnecessarily FC does not follow regional procedures while aborting		

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 12

Table of Contents

1. Theory

2. STAMP

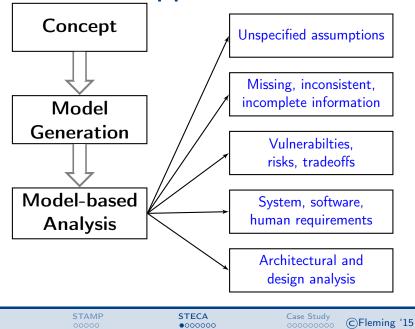
3. STECA

4. Case Study

Theory	STAMP	STECA	Case Study	©Fleming '15
00000	00000	0000000	000000000	Criticining 15

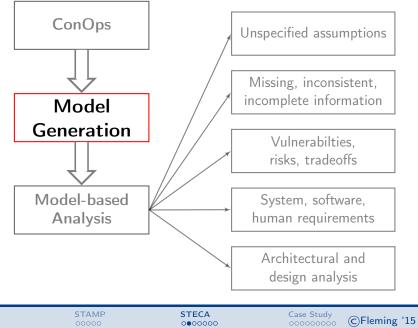
Approach

Systems-theoretic Early Concept Analysis—STECA

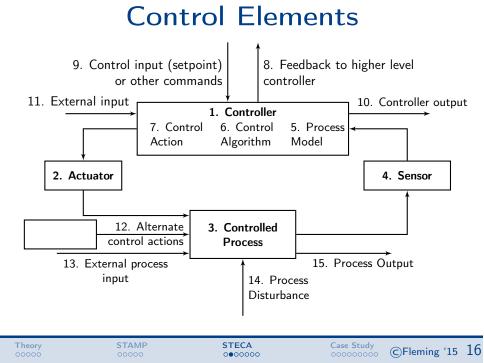

Theory 00000 **STAMP**

STECA

Case Study


©Fleming '15 14

Approach



14

Control Elements

15

What kinds of things can an "entity" do within a control structure, and more particularly within a control loop?

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 17

What kinds of things can an "entity" do within a control structure, and more particularly within a control loop?

Controller

- Enforces safety constraints
- Creates, generates, or modifies control actions based on algorithm or procedure and perceived model of system
- Processes inputs from sensors to form and update process model
- Processes inputs from external sources to form and update process model
- Transmits instructions or status to other controllers

What kinds of things can an "entity" do within a control structure, and more particularly within a control loop?

Actuator

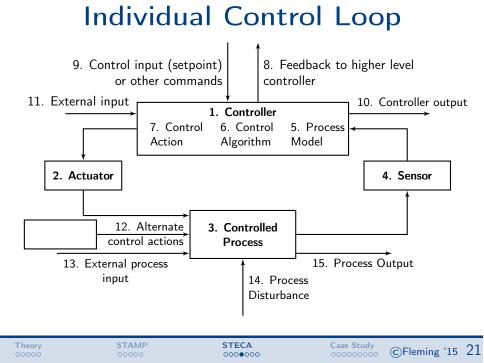
• Translates controller-generated action into process-specific instruction, force, heat, etc

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 18

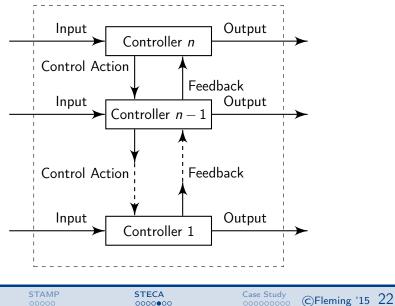
What kinds of things can an "entity" do within a control structure, and more particularly within a control loop?

Controlled Process

- Interacts with environment via forces, heat transfer, chemical reactions, etc
- Translates higher level control actions into control actions directed at lower level processes

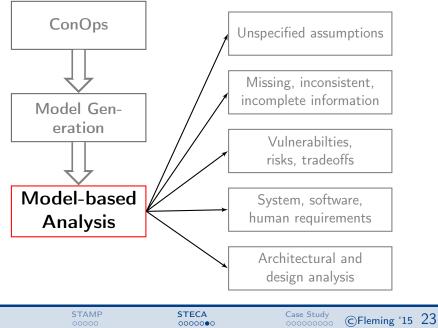

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 19

What kinds of things can an "entity" do within a control structure, and more particularly within a control loop?


Sensor

- Transmits continuous dynamic state measurements to controller (i.e. measures the behavior of controlled process via continuous or semi-continuous [digital] data)
- Transmits binary or discretized state data to controller (i.e. measures behavior of process relative to thresholds; has algorithm built-in but no cntl authority)
- Sythesizes and integrates measurement data

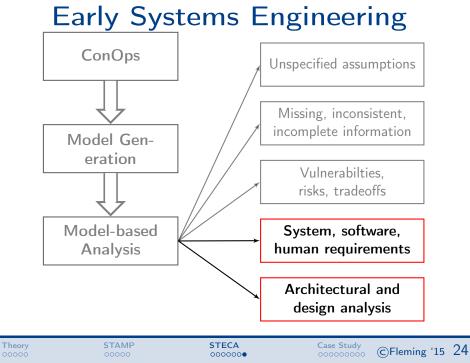
Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 20

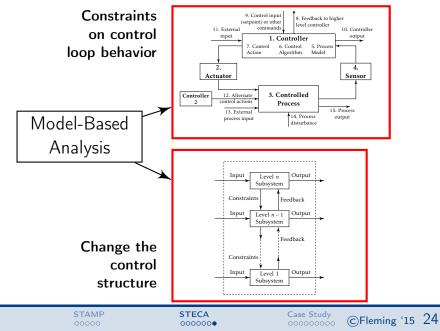

Control Structure

Theory

STECA 0000000 Case Study

Analysis


Analysis

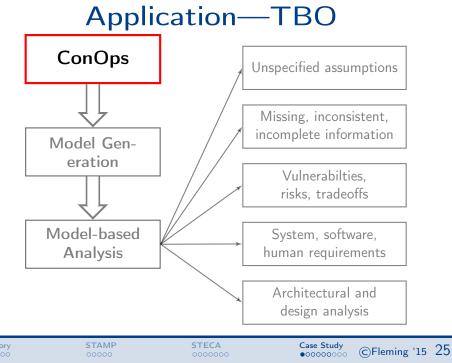

"Analyzing Safetyrelated Responsibilities"

> "Coordination & Consistency"

Theory	STAMP	STECA	Case Study	©Fleming '15 23
00000	00000	0000000	00000000	CFleming 15 23

Early Systems Engineering

Table of Contents


1. Theory

2. STAMP

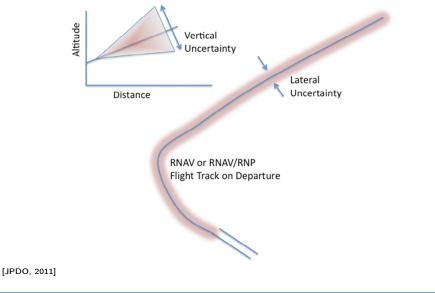
3. STECA

4. Case Study

Theory	STAMP	STECA	Case Study	
00000	00000	0000000	000000000	©Fleming '15

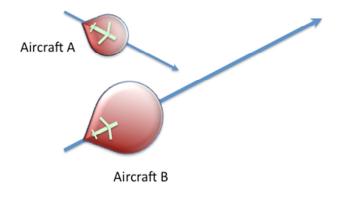
Application—TBO

Joint Planning and Development Oiffee JPDO Trajectory-Based Operations (TBO) Study Team Report Desember 4, 2011


Theory 00000 **STAMP** 00000

STECA

Case Study

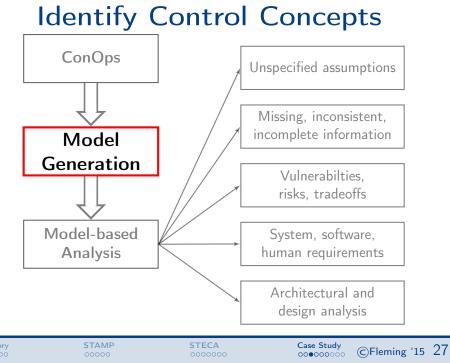

©Fleming '15 25

Application—TBO

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	25
-----------------	-----------------------	--------------	------------	--------------	----

Application—TBO

[JPDO, 2011]

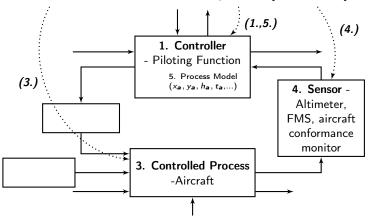

Theory	STAMP	STECA	Case Study	©Fleming '15 25
00000	00000	0000000	000000000	

System-Level Hazards

- [H-1] Aircraft violate minimum separation (LOS or loss of separation, NMAC or Near midair collision)
- [H-2] Aircraft enters uncontrolled state
- [H-3] Aircraft performs controlled maneuver into ground (CFIT, controlled flight into terrain)

- [SC-1] Aircraft must remain at least TBD nautical miles apart en route* \uparrow [H-1]
- [SC-2] Aircraft position, velocity must remain within airframe manufacturer defined flight envelope ↑[H-2]
- [SC-3] Aircraft must maintain positive clearance with all terrain (This constraint does not include runways and taxiways) ↑[H-3]

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 2


Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 27

Subject
Role
Behavior
Туре
Context

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	27

Subject	Conformance monitoring, Air automation
Role	Sensor
Behavior	Transmits binary or discretized state data to controller
Туре	(i.e. measures behavior of process relative to thresholds;
	has algorithm built-in but no cntl authority)
	Sythesizes and integrates measurement data
Context	This is a decision support tool that contains algorithms to synthesize information and provide alerting based on some criteria.

Theory 00000	STAMP 00000	STECA 0000000	Case Study	©Fleming '15 27

Theory 00000	STAMP	STECA	Case Study	©Fleming '15 28
00000	00000	0000000	000000000	9

TBO conformance is monitored both in the <u>aircraft</u> and on the <u>ground</u> against the agreed-upon 4DT. In the <u>air</u>, this monitoring (and alerting) includes lateral deviations based on RNP..., longitudinal ..., vertical..., and time from the FMS or other "time to go" aids. [JPDO, 2011]

1. Controller	Piloting function
2. Actuator	
3 Cntl'd Process	Aircraft
4. Sensor	Altimeter, FMS, Aircraft conformance monitor
5. Process Model	Intended latitude, longitude, altitude, time; Actual latitude,
	longitude, altitude, time
6. Cntl Algorithm	
7. Control Actions	
8. Controller Status	
9. Control Input	
10. Controller Output	
11. External Input	
12. Alt Controller	
13. Process Input	
14. Proc Disturbance	
15. Process Output	

Theory

STAMP

STECA

28

©Fleming '15

<u>Independent</u> of the aircraft, the <u>ANSP</u> uses <u>ADS-B</u> position reporting for lateral and longitudinal progress, altitude reporting for vertical, and tools that measure the time progression for the flight track. <u>Data link</u> provides aircraft intent information. Combined, this position and timing information is then compared to a performance requirement for the airspace and the operation. ...precision needed...will vary based on the density of traffic and the nature of the operation. [JPDO, 2011]

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 29

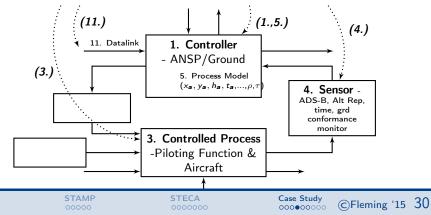
<u>Independent</u> of the aircraft, the <u>ANSP</u> uses <u>ADS-B</u> position reporting for lateral and longitudinal progress, altitude reporting for vertical, and tools that measure the time progression for the flight track. <u>Data link</u> provides aircraft intent information. Combined, this position and timing information is then compared to a performance requirement for the airspace and the operation. ...precision needed...will vary based on the density of traffic and the nature of the operation. [JPDO, 2011]

Subject	
Role	
Behavior	
Туре	
Context	

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15 29

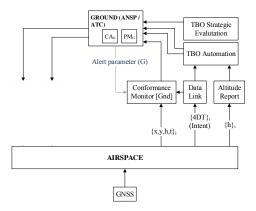
<u>Independent</u> of the aircraft, the <u>ANSP</u> uses <u>ADS-B</u> position reporting for lateral and longitudinal progress, altitude reporting for vertical, and tools that measure the time progression for the flight track. <u>Data link</u> provides aircraft intent information. Combined, this position and timing information is then compared to a performance requirement for the airspace and the operation. ...precision needed...will vary based on the density of traffic and the nature of the operation. [JPDO, 2011]

Subject	Conformance monitoring, Ground automation
Role	Sensor
Behavior	Transmits binary or discretized state data to controller
Туре	(i.e. measures behavior of process relative to thresholds;
	has algorithm built-in but no cntl authority)
	Sythesizes and integrates measurement data
Context	This is a decision support tool that contains algorithms
	to synthesize information and provide alerting based on
	some criteria.

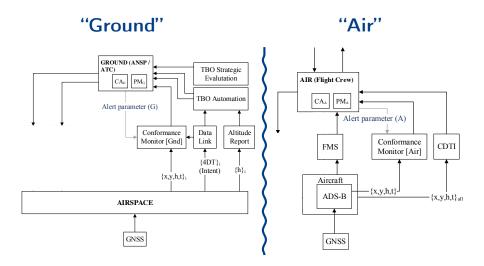

heory	
0000	

STAMF 00000 STECA

©Fleming '15

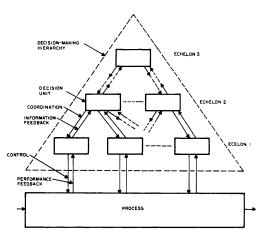

<u>Independent</u> of the aircraft, the <u>ANSP uses ADS-B</u> position reporting for lateral and longitudinal progress, altitude reporting for vertical, and <u>tools</u> that measure the time progression for the flight track. <u>Data link</u> provides aircraft intent information. Combined, this position and timing information is then compared to a performance requirement for the airspace and the operation. ...precision needed...will vary based on the density of traffic and the nature of the operation. [JPDO, 2011]

Theory

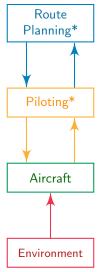

Conf Monitoring Control Loops

"Ground"

Theory 00000	STAMP 00000	STECA 0000000	Case Study	©Fleming '15	31

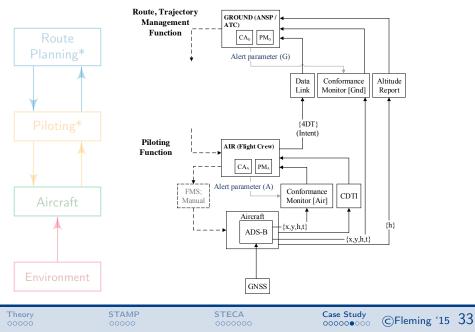

Conf Monitoring Control Loops

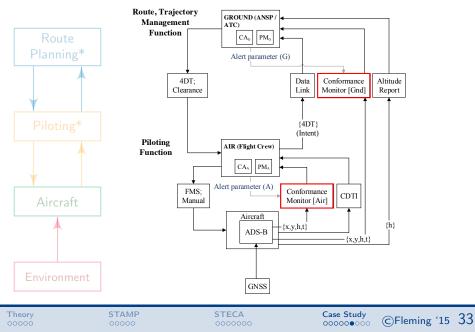
Theory 00000	STAMP 00000	STECA 0000000	Case Study	©Fleming '15 3

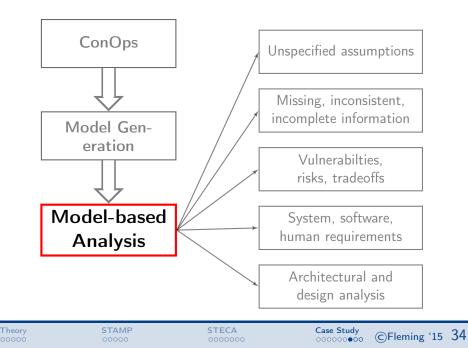

How to Establish Hierarchy?

- Higher level of systems:
 - Decision Making Priority
 - \triangleright Decision Complexity, \uparrow
 - Time Scale between decisions, ↑
 - ▷ Dynamics of controlled system, ↓

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	32


Function




Safety-Related Responsibilities

- Provide conflict-free clearances & trajectories
- Merge, sequence, space the flow of aircraft
- Navigate the aircraft
- Provide aircraft state information to rte planner
- Avoid conflicts with other aircraft, terrain, weather
- Ensure that trajectory is within aircraft flight envelope
- Provide lift
- Provide propulsion (thrust)
- Orient and maintain control surfaces

Theory 00000	STAMP 00000	STECA 0000000	Case Study ○○○○○●○○○	©Fleming '15	33
-----------------	-----------------------	-------------------------	-------------------------	--------------	----

Analysis

- 1. Are the control loops complete?
- 2. Are the system-level safety responsibilities accounted for?
- 3. Do control agent responsibilities conflict with safety responsibilities?
- 4. Do multiple control agents have the same safety responsibility(ies)?
- Do multiple control agents have or require process model(s) of the same process(es)?
- 6. Is a control agent responsible for multiple processes? If so, how are the process dynamics (de)coupled?

}	"Completeness"
}	"Analyzing Safety- related Responsibilities"
}	"Coordination & Consistency"

©Fleming '15

-34

2. Are the system-level safety responsibilities accounted for?

3. Do control agent responsibilities conflict with safety responsibilities?

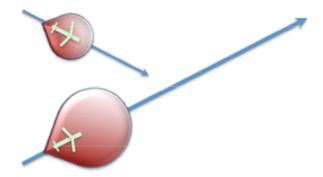
Theory	STAMP	STECA	Case Study	©Fleming '15	25
00000	00000	0000000	000000000	C)Fleming 15	35

- Gaps in Responsibility (2)
- Conflicts in Responsibility (3)

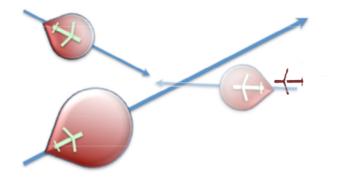
$$(\forall \sigma_i \in \Sigma) (\exists c \in \mathscr{C}) [P(c, \sigma_i)], \qquad (2)$$
$$(\forall H_i \in \mathcal{H}) (\neg \exists c \in \mathscr{C}) [P(c, H_i) \land P(c, \mathcal{G})] \qquad (3)$$

 (α)

Theory 00000	STAMP 00000	STECA	Case Study ○○○○○○●○	©Fleming '15	35


 $(\forall \in \mathbf{\nabla}) (\exists \in (\mathcal{O}) [\mathbf{D} (\cap)]$

Potential conflict between goal condition, safety responsibilities???


[JPDO, 2011]

"The pilot must also work to close the trajectory. Pilots will need to update waypoints leading to a closed trajectory in the FMS, and work to follow the timing constraints by flying speed controls."

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	36

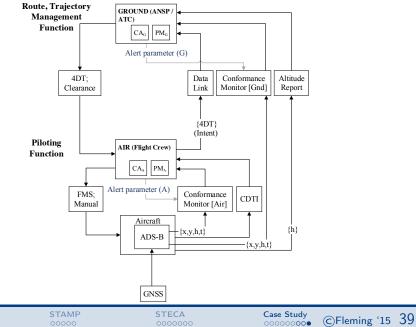
Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	37

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	37

4. Do multiple control agents have the same safety responsibility(ies)?

5. Do multiple control agents have or require process model(s) of the same process(es)?

6. Is a control agent responsible for multiple processes? If so, how are the process dynamics (de)coupled?


Theory 00000	STAMP 00000	STECA 0000000	Case Study	©Fleming '15	38

- Coordination Principle (4)
- Consistency Principle (5)

 $(\forall \mathsf{c} \in \mathscr{C}_i) (\forall \mathsf{d} \in \mathscr{C}_j) \exists (\mathscr{P}(\mathsf{c}, \mathsf{d}) \lor \mathscr{P}(\mathsf{d}, \mathsf{c})) [\mathsf{A}(\mathsf{c}, \mathcal{V}_p) \land \mathsf{A}(\mathsf{d}, \mathcal{V}_p)], \quad (4)$

$$(\forall v \in \mathcal{V}, \forall c \in \mathscr{C}_i, \forall d \in \mathscr{C}_j \mid A(c, v) \land A(d, v)) [\rho_i(a, v) \equiv \rho_j(a, v) \land G_i \equiv G_j]$$
(5)

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	38

Theory

$$\mathcal{B}_{cm} := \mathcal{L}_{cm} imes \mathcal{D}_{cm} o \mathcal{I}_{cm},$$

(6)

- \mathcal{L}_{cm} is a model of the airspace state and
- D_{cm} is the decision criteria regarding conformance.

Theory 00000	STAMP 00000	STECA	Case Study	©Fleming '15	40
00000	00000	0000000	00000000	<u> </u>	

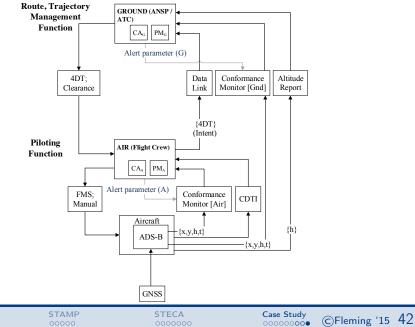
$$\mathcal{L}_{cm} := \{ z_{\text{int}}, z_{\text{act}}, \rho, T, P_r, W, E_{cm}, F_D \}$$
(7)

$$z_{\text{int}} := \{G, C, t\}_{\text{int}}$$

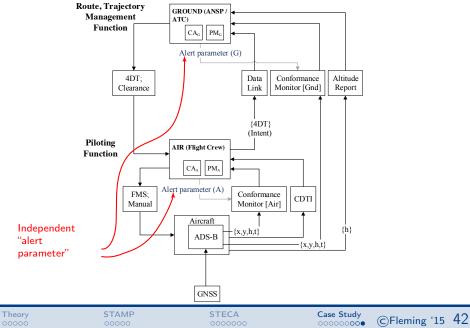
$$z_{\mathsf{act}} := \{G, C, t\}_{\mathsf{act}}$$

$$\rho$$
 := Traffic density

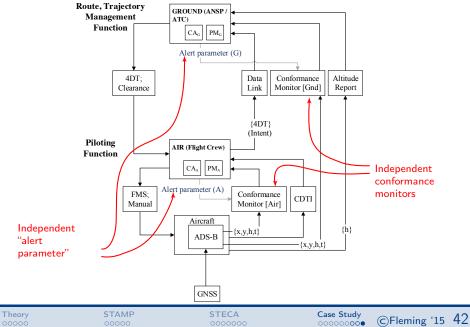
$$au :=$$
 Operation type


$$P_r := \{\mathsf{RNP}, \mathsf{RTP}\}$$

$$W := Wake turbulence model$$


$$F_D := \{F, z_{int}\}$$

$$D_{cm} = \{ z_{act} | z_{act} \notin \bar{z} (z_{int}, E_{cm}, a_{cm}) \}, \qquad (8)$$


Theory 00000	STAMP 00000	STECA 0000000	Case Study	©Fleming '15	41
-----------------	-----------------------	-------------------------	------------	--------------	----

Theory

Coordination & Consistency

References

Ashby, W. R. (1957). An Introduction to Cybernetics. Chapman & Hall Ltd.

Business Korea (2014). Auto parts manufacturers concerned over new ordinary wage standards.

Checkland, P. (1999). Systems thinking, systems practice: includes a 30-year retrospective. John Wiley & Sons, Inc.

- Frola, F. and Miller, C. (1984). System safety in aircraft management. Logistics Management Institute, Washington DC.
- JPDO (2011). JPDO Trajectory-Based Operations (TBO) study team report. Technical report, Joint Planning and Development Office.
- JPDO (2012). Capability safety assessment of trajectory based operations v1.1. Technical report, Joint Planning and Development Office Capability Safety Assessment Team.
- Leveson, N. G. (2012). Engineering a Safer World. MIT Press.
- Mesarovic, M. D. (1970). Multilevel systems and concepts in process control. Proceedings of the IEEE, 58(1):111–125.
- Strafaci, A. (2008). What does BIM mean for civil engineers? CE News, Tranportation.

Vincoli, J. W. (2005). Basic Guide to System Safety, Second Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA.

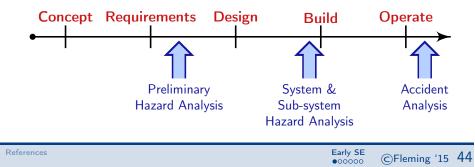
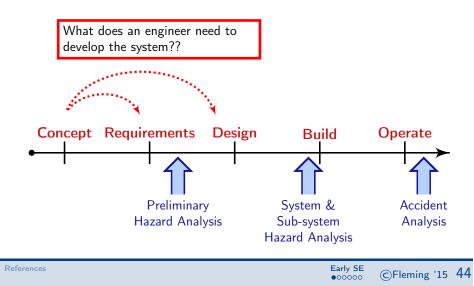
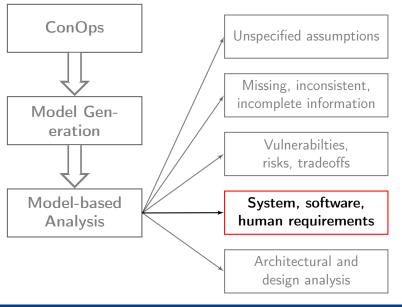

Early SE

Table of Contents


5. Early SE


Application of Results

Application of Results

Application of Results

Early SE

00000

44

Scenario 2:

ANSP issues command that results in aircraft closing (or maintaining) a 4DT, but that 4DT has a conflict.

Causal Factors:

- This scenario arises because the ANSP has been assigned the responsibility to assure that aircraft conform to 4D trajectories as well as to prevent loss of separation.
 - A conflict in these responsibilities occurs when any 4D trajectory has a loss of separation (LOS could be with another aircraft that is conforming or is non-conforming). [Goal Condition]

Scenario 2:

ANSP issues command that results in aircraft closing (or maintaining) a 4DT, but that 4DT has a conflict.

Causal Factors:

- Additional hazards occur when the 4DT encounters inclement weather, exceeds aircraft flight envelope, or aircraft has emergency
- ANSP and crew have inconsistent perception of conformance due to independent monitor, different alert parameter setting

Early SE

00000

©Fleming '15

45

Scenario 2:

ANSP issues command that results in aircraft closing (or maintaining) a 4DT, but that 4DT has a conflict.

Requirements:

- *S2.1* Loss of separation takes precedence over conformance in all TBO procedures, algorithms, and human interfaces [Goal Condition]
- 52.3 Loss of separation alert should be displayed more prominently when conformance alert and loss of separation alert occur simultaneously.[Observability Condition] This requirement could be implemented in the form of aural, visual, or other format(s).
- S2.4 Flight crew must inform air traffic controller of intent to deviate from 4DT and provide rationale [Model Condition] ...

Human factors-related requirements

Early SE

00000

©Fleming '15

46

Scenario 2:

ANSP issues command that results in aircraft closing (or maintaining) a 4DT, but that 4DT has a conflict.

Requirements:

S2.8 4D Trajectories must remain conflict-free, to the extent possible ...

- *S2.10* Conformance volume must be updated within TBD seconds of change in separation minima
- *S2.11* Conformance monitoring software must be provided with separation minima information

Software-related requirements

Early SE

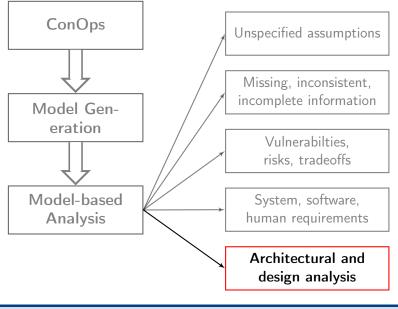
00000

46

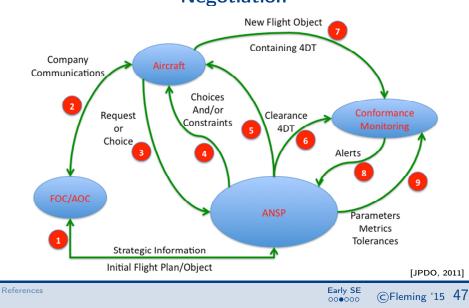
Scenario 2:

ANSP issues command that results in aircraft closing (or maintaining) a 4DT, but that 4DT has a conflict.

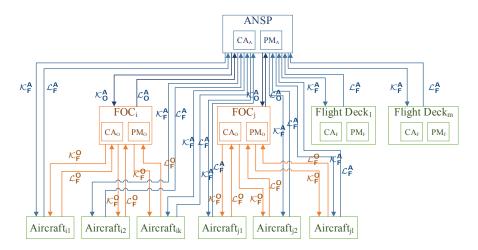
Requirements:


- *S2.14* ANSP must be provided information to monitor the aircraft progress relative to its own "Close Conformance" change of clearance
 - *S3.2* ANSP must be able to generate aircraft velocity changes that close the trajectory within TBD minutes (or TBD nmi). Rationale: TBO ConOps is unclear about how ANSP will help the aircraft work to close trajectory. Refined requirements will deal with providing the ANSP feedback about the extent to which the aircraft does not conform, the direction and time, which can be used to calculate necessary changes.

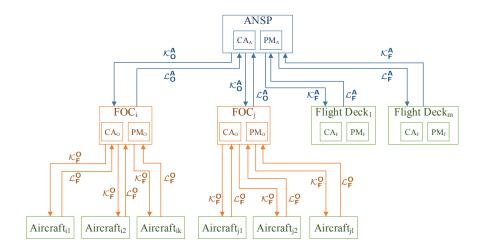
Component Interaction Constraints


Early SE

00000

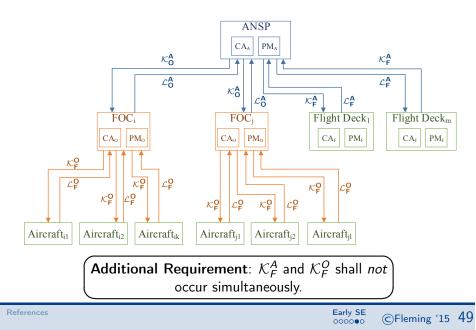

Architecture Studies

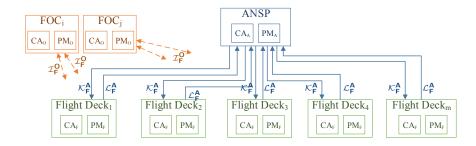
Architecture Studies Negotiation


TBO Negotiation

Early SE

000000

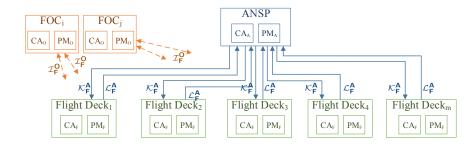

48



Early SE

000000

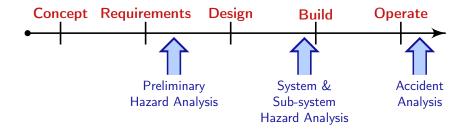
49



Early SE

000000

50

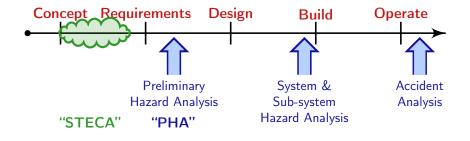

Additional Requirement: This becomes the active control structure within TBD minutes of gate departure.

50

Evaluation

Systems Engineering Phases

Safety Activities


	Early SE	
	00000	

©Fleming '15 51

References

Evaluation

Systems Engineering Phases

Safety Activities

Early SE

00000