Engineering a Safer and More Secure World

Nancy Leveson
MIT
Topics

• What is the problem? Why do we need something new?
• Applying systems theory to system safety engineering
• STAMP: a new model of accident causality
• Tools
• Does it work? (Evaluations)
• Conclusions
Our current tools are all 40-65 years old but our technology is very different today

- Introduction of computer control
- Exponential increases in complexity
- Lots of new technology
Software has Revolutionized Engineering (1)

1. Software does not “fail”

Software is simply the design of a machine abstracted from its physical realization

• Advantages

 – Machines that were physically impossible or impractical to build become feasible
 – Design can be changed without retooling or manufacturing
 – Can concentrate on steps to be achieved without worrying about how steps will be realized physically
Software has Revolutionized Engineering (2)

2. The role of software in accidents almost always involves flawed requirements

- Incomplete or wrong assumptions about operation of controlled system or required operation of computer
- Unhandled controlled-system states and environmental conditions

- Merely trying to get the software “correct” or to make it reliable will not make it safer under these conditions
3. Software allows almost unlimited system complexity

Can no longer

– Plan, understand, anticipate, and guard against all undesired system behavior
– Exhaustively test to get out all design errors

Now have two types of accidents:

Component Failure Accidents
• Single or multiple component failures
• Usually assume random failure

Component Interaction Accidents
• Arise in interactions among components
• Related to interactive and dynamic complexity
It's only a random failure, sir! It will never happen again.
Accident with No Component Failures

- Mars Polar Lander
 - Have to slow down spacecraft to land safely
 - Use Martian atmosphere, parachute, descent engines (controlled by software)
 - Software knows landed because of sensitive sensors on landing legs. Cut off engines when determine have landed.
 - But “noise” (false signals) by sensors generated when parachute opens. Not in software requirements.
 - Software not supposed to be operating at that time but software engineers decided to start early to even out load on processor
 - Software thought spacecraft had landed and shut down descent engines
Another Example

- Navy aircraft were ferrying missiles from one location to another.
- One pilot executed a planned test by aiming at aircraft in front and firing a dummy missile.
- Nobody involved knew that the software was designed to substitute a different missile if the one that was commanded to be fired was not in a good position.
- In this case, there was an antenna between the dummy missile and the target so the software decided to fire a live missile located in a different (better) position instead.
Confusing Safety and Reliability

Scenarios involving failures

Unreliable but not unsafe

Unsafe but not unreliable

Unreliable and unsafe

Unsafe scenarios

Preventing Component or Functional Failures is NOT Enough
4. Software changes the role of humans in systems

Typical assumption is that operator error is cause of most incidents and accidents

- So do something about operator involved (admonish, fire, retrain them)

- Or do something about operators in general
 - Marginalize them by putting in more automation
 - Rigidify their work by creating more rules and procedures
A Systems View of Operator Error

- Operator error is a symptom, not a cause
- All behavior affected by context (system) in which occurs
 - Role of operators is changing in software-intensive systems as is the errors they make
 - Designing systems in which operator error inevitable and then blame accidents on operators rather than designers
- To do something about operator error, must look at system in which people work:
 - Design of equipment
 - Usefulness of procedures
 - Existence of goal conflicts and production pressures
- Human error is a symptom of a system that needs to be redesigned
Human factors concentrates on the "screen out"

Engineering concentrates on the "screen in"
Not enough attention on integrated system as a whole
We Need Something New

• New levels of complexity, software, human factors do not fit into a reductionist, reliability-oriented world.

• Trying to shoehorn new technology and new levels of complexity into old methods will not work
System Theory as the Foundation for System Safety
The Problem is Complexity

Ways to Cope with Complexity

• Analytic Reduction
• Statistics
• Systems Theory and Systems Engineering
Analytic Reduction

• Divide system into distinct parts for analysis

 Physical aspects → Separate physical components or functions

 Behavior → Events over time

• Examine parts separately and later combine analysis results

• Assumes such separation does not distort phenomenon

 – Each component or subsystem operates independently

 – Analysis results not distorted when consider components separately

 – Components act the same when examined singly as when playing their part in the whole

 – Events not subject to feedback loops and non-linear interactions
Traditional Approach to Safety

• Reductionist
 – Divide system into components
 – Assume accidents are caused by component failure
 – Identify chains of directly related physical or logical component failures that can lead to a loss
 – Evaluate reliability of components separately and later combine analysis results into a system reliability value

Note: Assume randomness in the failure events so can derive probabilities for a loss
 – Software and humans do not satisfy this assumption
Accident Causality Models

• Underlie all our efforts to engineer for safety
• Explain why accidents occur
• Determine the way we prevent and investigate accidents
• May not be aware you are using one, but you are
• Imposes patterns on accidents

“All models are wrong, some models are useful”

George Box
Heinrich’s Domino Model of Accident Causation (1932)

Social Environment and Inherited Behavior (e.g., alcoholism) → Fault of the person (carelessness, bad temper, recklessness, etc) → Unsafe act or condition – Performing a task without the appropriate PPE → Accident → Injury – outcome of some accidents but not all

MISTAKES OF PEOPLE
Domino “Chain of events” Model

DC-10:

- Cargo door fails
- Causes Floor collapses
- Causes Hydraulics fail
- Causes Airplane crashes

Chain of Failure Events
Variants of Domino Model

• Bird and Loftus (1976)
 – Lack of control by management, permitting
 – Basic causes (personal and job factors) that lead to
 – Immediate causes (substandard practices/conditions/errors), which are the proximate cause of
 – An accident or incident, which results in
 – A loss.

• Adams (1976)
 – Management structure (objectives, organization, and operations)
 – Operational errors (management or supervisor behavior)
 – Tactical errors (caused by employee behavior and work conditions)
 – Accident or incident
 – Injury or damage to persons or property.
Reason Swiss Cheese (1990)

The Reason Model and Accident Causal Chain

- Organizational Influences
- Unsafe Supervision
- Preconditions for Unsafe Acts
- Unsafe Acts
- Failed or Absent Defenses
- Latent Failures
- Latent Failures
- Active Failures

Mishap

Source: Adapted from Reason, 1990
Accidents as Chains of Failure Events

- Forms the basis for most safety engineering and reliability engineering analysis:

 FTA, PRA, FMEA/FMECA, Event Trees, etc.

 and design (concentrate on dealing with component failure):
 Redundancy and barriers (to prevent failure propagation),
 High component integrity and overdesign,
 Fail-safe design,
 Operational procedures,
Chain-of-events example

Moisture → Corrosion → Weakened metal → Tank rupture → Fragments projected → Personnel injured

- **Operating pressure**: Reduce pressure as tank ages.
- **AND**:
 - Moisture: Use desiccant to keep moisture out of tank.
 - Corrosion: Use stainless steel or coat of plate carbon steel to prevent contact with moisture.
 - Weakened metal: Overdesign metal thickness so corrosion will not reduce strength to failure point during foreseeable lifetime.
 - Tank rupture: Use burst diaphragm to rupture before tank does, preventing more extensive damage and fragmentation.
 - Fragments projected: Provide mesh screen to contain possible fragments.
- **OR**:
 - Equipment damaged: Locate tank away from equipment susceptible to damage.
 - Personnel injured: Keep personnel from vicinity of tank while it is pressurized.
Standard Approach does not Handle

- Component interaction accidents
- Systemic factors (affecting all components and barriers)
- Software and software requirements errors
- Human behavior (in a non-superficial way)
- System design errors
- Indirect or non-linear interactions and complexity
- Migration of systems toward greater risk over time (e.g., in search for greater efficiency and productivity)
Analytic Reduction does not Handle

- Component interaction accidents
- Systemic factors (affecting all components and barriers)
- Software and software requirements errors
- Human behavior (in a non-superficial way)
- System design errors
- Indirect or non-linear interactions and complexity
- Migration of systems toward greater risk over time (e.g., in search for greater efficiency and productivity)
• “But the world is too complex to look at the whole, we need to look at individual components and then combine the results”

• Right?
Systems Theory

• Developed for systems that are
 – Too complex for complete analysis
 • Separation into (interacting) subsystems distorts the results
 • The most important properties are emergent
 – Too organized for statistics
 • Too much underlying structure that distorts the statistics
 • New technology and designs have no historical information

• First used on ICBM systems of 1950s/1960s

• Basis for system engineering and system safety
Systems Theory (2)

• Focuses on systems taken as a whole, not on parts taken separately

• Emergent properties
 – Some properties can only be treated adequately in their entirety, taking into account all social and technical aspects
 “The whole is greater than the sum of the parts”
 – These properties arise from relationships among the parts of the system
 How they interact and fit together
Emergent properties (arise from complex interactions)

Process

Process components interact in direct and indirect ways

Safety and security are emergent properties
Controller

- Controlling emergent properties (e.g., enforcing safety constraints)
 - Individual component behavior
 - Component interactions

Control Actions → Process components interact in direct and indirect ways

Feedback → Process components interact in direct and indirect ways
Controller

Controlling emergent properties (e.g., enforcing safety constraints)
- Individual component behavior
- Component interactions

Air Traffic Control:
Safety Throughput

Process

Process components interact in direct and indirect ways
Controls/Controllers Enforce Safety Constraints

- Power must never be on when access door open
- Two aircraft must not violate minimum separation
- Aircraft must maintain sufficient lift to remain airborne
- Public health system must prevent exposure of public to contaminated water and food products
- Pressure in a offshore well must be controlled
- Runway incursions and operations on wrong runways or taxiways must be prevented
Controls/Controllers Enforce Safety Constraints

- Bomb must not detonate without positive action by authorized person
- Submarine must always be able to blow the ballast tanks and return to surface
- Truck drivers must not drive when sleep deprived
- Integrity of hull must be maintained on a submarine
- Fire must not be initiated on a friendly target
A Broad View of “Control”

Component failures and unsafe interactions may be “controlled” through design
 (e.g., redundancy, interlocks, fail-safe design)

or through process
 – Manufacturing processes and procedures
 – Maintenance processes
 – Operations

or through social controls
 – Governmental or regulatory
 – Culture
 – Insurance
 – Law and the courts
 – Individual self-interest (incentive structure)
There may be multiple controllers, processes, and levels of control.

Each controller enforces specific constraints, which together enforce the system level constraints (emergent properties).

(with various types of communication between them)
Example Safety Control Structure

SYSTEM DEVELOPMENT

Congress and Legislatures
- Legislation
- Government Reports
- Lobbying
- Hearings and open meetings
- Accidents

Government Regulatory Agencies
- Industry Associations, User Associations, Unions, Insurance Companies, Courts
- Regulations
- Standards
- Certification
- Legal penalties
- Case Law

Company Management
- Safety Policy
- Standards
- Resources
- Status Reports
- Risk Assessments
- Incident Reports

Project Management
- Safety Standards
- Design, Documentation
- Test reports
- Hazard Analyses
- Review Results

Implementation and assurance
- Manufacturing Management
- Work Procedures
- Work reports
- Audits
- Work logs
- Inspections

Hazard Analyses
- Documentation
- Design Rationale

Maintenance and Evolution
- Problem Reports
- Incidents
- Change Requests
- Performance Audits

SYSTEM OPERATIONS

Congress and Legislatures
- Legislation
- Government Reports
- Lobbying
- Hearings and open meetings
- Accidents

Government Regulatory Agencies
- Industry Associations, User Associations, Unions, Insurance Companies, Courts
- Regulations
- Standards
- Certification
- Legal penalties
- Case Law

Company Management
- Safety Policy
- Standards Resources
- Operations Reports

Operations Management
- Work Instructions
- Change requests
- Audit reports
- Problem reports

Operating Process
- Human Controller(s)
- Automated Controller
- Actuator(s)
- Sensor(s)
- Physical Process
- Revised operating procedures
- Software revisions
- Hardware replacements
Safety Constraints

- Each component in the control structure has
 - Assigned responsibilities, authority, accountability
 - Controls that can be used to enforce safety constraints

- Each component’s behavior is influenced by
 - Context (environment) in which operating
 - Knowledge about current state of process
Role of Process Models in Control

- Controllers use a **process model** to determine control actions.

- Accidents often occur when the process model is incorrect:
 - How could this happen?

- Four types of unsafe control actions:
 - Control commands required for safety are not given
 - Unsafe ones are given
 - Potentially safe commands given too early, too late
 - Control stops too soon or applied too long

(Leveson, 2003); (Leveson, 2011)
Identifying Causal Scenarios

Controller

- Inadequate Control Algorithm (Flaws in creation, process changes, incorrect modification or adaptation)
- Process Model (inconsistent, incomplete, or incorrect)
- Control input or external information wrong or missing

Actuator

- Inadequate operation
- Delayed operation
- Conflicting control actions
- Process input missing or wrong

Sensor

- Inadequate operation
- Incorrect or no information provided
- Measurement inaccuracies
- Feedback delays

Controlled Process

- Component failures
- Changes over time
- Unidentified or out-of-range disturbance
- Process output contributes to system hazard

Controller

- Missing or wrong communication with another controller
- Inadequate or missing feedback
- Feedback Delays

Component failures
- Changes over time
- Unidentified or out-of-range disturbance
- Process output contributes to system hazard
STAMP (System-Theoretic Accident Model and Processes)

- Defines safety as a control problem (vs. failure problem)
- Applies to very complex systems
- Includes software, humans, new technology
- Based on systems theory and systems engineering
- Expands the traditional model of the accident causation (cause of losses)
 - Not just a chain of directly related failure events
 - Losses are complex processes
Safety as a Dynamic Control Problem (STAMP)

- Events result from lack of enforcement of safety constraints in system design and operations.
- Goal is to control the behavior of the components and systems as a whole to ensure safety constraints are enforced in the operating system.
- A change in emphasis:
 - “prevent failures”
 - “enforce safety/security constraints on system behavior”
Changes to Analysis Goals

• Hazard analysis:
 – Ways that safety constraints might not be enforced so can be eliminated or mitigated in the design or operations (vs. chains of failure events leading to accident and their probabilities)

• Accident Analysis (investigation)
 – Why safety control structure was not adequate to prevent loss (vs. what failures led to loss and who responsible)
STAMP: Theoretical Causality Model

Processes

- System Engineering (e.g., Specification, Safety-Guided Design, Design Principles)
- Risk Management
- Management Principles/Organizational Design
- Operations
- Regulation

Tools

- Accident/Event Analysis
 CAST
- Hazard Analysis
 STPA
- Early Concept Analysis
 STECA
- Organizational/Cultural Risk Analysis
- Identifying Leading Indicators
- Security Analysis
 STPA-Sec

STAMP: Theoretical Causality Model
70-80% of Safety Decisions [Frola & Miller, 1984]
70-80% of Safety Decisions [Frola & Miller, 1984]
STPA Example:
PSI Gantry 2 Proton Radiation Therapy
High-Level Safety Control Structure for Gantry 2

1. Treatment Specifications
 - fraction definition, target positioning information, steering file
2. Capability Upgrade Requests

Therapeutic Requirements

- QA results
- Patient physionomy change

(delayed)
- Patient health outcome

Patient Preparation
- Beam Creation and Delivery

Patient well-being
- Patient physiognomy changes

Patient
Treatment Definition

D1: Treatment Definition

- **Tumor Board**
 - Request therapy slot for patient
 - Approve patient

D0: Treatment Delivery

- **Medical Doctor**
 - Define tumor volume
 - Specify treatment doses
 - Approve treatment plan
 - Propose treatment plan

- **Medical Physicist**
 - Define field direction
 - Combine CT and MRI images
 - Calculate dose distribution

- **Treatment Planning Software**
 - Define fields (direction, energy, intensity)
 - Map body

- **Steering File Generator**
 - Capability upgrade requests
 - Steering file with treatment specification (fraction definition, patient positioning information, beam properties)

- **Imaging Facility (CT/MRI)**
 - QA results
 - Patient physiognomy changes

- **Treatment Delivery – D0**
 - Patient Position
 - Beam Creation and Delivery
 - Patient well being
 - Patient physiognomy changes

- **Patient**
 - Cure evaluation
 - Prognosis
Zooming into Treatment Delivery

Treatment Definition – D0

- Capability upgrade requests
- Treatment specifications (fraction definition, patient positioning information, beam characteristics)
- QA results

PROSCAN Design Team

- Problem reports
- Incidents
- Change requests
- Performance audits
- Revised operating procedures

Operations Management

- Work orders
- Problem reports
- Change requests
- Procedures
- Problem reports
- Change requests
- Procedures
- Problem reports
- Change requests

Maintenance

- Hardware replacements
- Test results

Operators

- Start treatment
- QA result
- Patient position
- Position

Medical Team

- Room clear
- Patient well being

PROSCAN facility (physical actuators and sensors, automated controllers)

- Problem reports
- Change requests

Patient Position
- Beam Creation and Delivery

Patient Physiognomy
- Changes

Panic button

Patient

(delayed)
Cure evaluation
Prognosis

Performance audits
Software revisions
Hardware modifications

Procedures
Revised operating procedures

Revise operating procedures

Test results

QA results

Patient position

Position

Movement

Starting with system-level hazards (e.g., overdose of radiation or radiation to wrong place on body)

- Identify system safety requirements:
 e.g., radiation must never be delivered if patient is not in correct position on the table

- Flow down safety requirements for each system component
 e.g., operator must not deliver treatment if patient is not on the table and in the correct position

Next step is to identify scenarios leading to unsafe control actions and eliminate or mitigate them
Causal Scenarios

• **Scenario 1** - Operator was expecting patient to have been positioned, but table positioning was delayed compared to plan because of
 – Delays in patient preparation
 – Delays in patient transfer to treatment area;
 – Unexpected delays in beam availability
 – Technical issues being processed by other personnel without proper communication with the operator.

• **Controls:**
 – Provide operator with direct visual feedback to the gantry coupling point, and require check that patient has been positioned before starting treatment (M1).
 – Provide a physical interlock that prevents beam-on unless table positioned according to plan
Example Causal Scenarios (2)

• **Scenario 2** - Operator is asked to turn the beam on outside of a treatment sequence (e.g. because the design team wants to troubleshoot a problem) but inadvertently starts treatment and does not realize that the facility proceeds with reading the treatment plan.

• **Controls:**
 - Reduce the likelihood that non-treatment activities have access to treatment related input by creating a non-treatment mode to be used for QA and experiments, during which facility does not read treatment plans that may have been previously been loaded (M2);
 - Make procedures (including button design if pushing a button is what starts treatment) to start treatment sufficiently different from non-treatment beam on procedures that the confusion is unlikely.
System Theoretic Early Concept Analysis: STECA (Dr. Cody Fleming)

ConOps

Model Generation

Model-Based Analysis

- Unspecified Assumptions
- Missing, inconsistent, incomplete information
- Vulnerabilities, risks, tradeoffs
- System, software, human requirements (including information rqtms.)
- Architectural and design analysis to eliminate and control hazards
Currently primarily focus on tactics
 - Cyber security often framed as battle between adversaries and defenders (tactics)
 - Requires correctly identifying attackers motives, capabilities, targets

Can reframe problem in terms of strategy
 - Identify and control system vulnerabilities (vs. reacting to potential threats)
 - Top-down strategy vs. bottom-up tactics approach
 - Tactics tackled later
Integrated Approach to Safety and Security:

- Safety: prevent losses due to unintentional actions by benevolent actors
- Security: prevent losses due to intentional actions by malevolent actors
- Key difference is intent
- Common goal: loss prevention
 - Ensure that critical functions and services provided by networks and services are maintained
 - New paradigm for safety will work for security too
 - May have to add new causes, but rest of process is the same
 - A top-down, system engineering approach to designing safety and security into systems
Build safety and security into system from beginning

- Safety/Secure Systems Thinking
- System Safety/Security Requirements
- Systems Engineering
- Cyber Security/Safety “Bolt-on”
- Attack/Accident Response

Cost of Fix

Low to High

Concept → Requirements → Design → Build → Operate
Evaluation: Does it Work?
Is it Practical?

• STPA has been or is being used in a large variety of industries
 – Spacecraft
 – Aircraft
 – Air Traffic Control
 – UAVs (RPAs)
 – Defense
 – Automobiles (GM, Ford, Nissan)
 – Medical Devices and Hospital Safety
 – Chemical plants
 – Oil and Gas
 – Nuclear and Electrical Power
 – CO₂ Capture, Transport, and Storage
 – Finance
 – Etc.
Does it Work?

• Most of these systems are very complex (e.g., the new U.S. missile defense system)

• In all cases where a comparison was made (to FTA, HAZOP, FMEA, ETA, etc.)
 – STPA found the same hazard causes as the old methods
 – Plus it found more causes than traditional methods
 – In some evaluations, found accidents that had occurred that other methods missed (e.g., EPRI)
 – Cost was orders of magnitude less than the traditional hazard analysis methods
 – Same results for security evaluations by CYBERCOM
Safety Control Structure for FMIS
Summary

• More comprehensive and powerful approach to safety (and security)
 – Examines inter-relationships rather than just linear cause-effect chains.
 – Includes what consider now (component failures) but more (e.g., system design errors, requirements flaws)

• Includes social, human, software-related factors

• Top-down system engineering approach
 – Safety-guided design starts early at concept formation
 – Generates safety/security requirements from hazard analysis

• Handles much more complex systems than traditional safety analysis approaches and costs less
Paradigm Change

• Does not imply what previously done is wrong and new approach correct

• Einstein:

 “Progress in science (moving from one paradigm to another) is like climbing a mountain”

As move further up, can see farther than on lower points
Paradigm Change (2)

New perspective does not invalidate the old one, but extends and enriches our appreciation of the valleys below.

Value of new paradigm often depends on ability to accommodate successes and empirical observations made in old paradigm.

New paradigms offer a broader, rich perspective for interpreting previous answers.
A life without adventure is likely to be unsatisfying, but a life in which adventure is allowed to take whatever form it will, is likely to be short.

Bertrand Russell