Using STPA to Support Risk Management for Interoperable Medical Systems

STAMP Workshop 2015, MIT

Sam Procter, John Hatcliff SAnToS Lab Kansas State University Anura Fernando Underwriters Laboratories Sandy Weininger US Food and Drug Administration

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholarin-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.

Health Care Involves A Variety of System Components

Motivation

- What are the types of things we could do with device integration?
 - Information forwarding
 - Automation of clinical workflows
 - Closed loop control between devices
- Unlike personal computing, medical devices are not designed to work together
- Integrating medical devices would bring myriad benefits
- how can we do so safely?

Outline

Background

- PCA Interlock Scenario
- Medical Application Platforms
- Tooling
- Hazard Analysis In AADL
- Architectural Integration

PCA Interlock Scenario

- Patients are commonly given patient-controlled analgesics after surgery
- Crucial to care, but numerous issues related to safety
- Data for disabling the pump exists now (just a system invariant) -- we just need to integrate it

PCA Pump Safety Interlock

Fully leverage device data streams and the ability to control devices

Medical Application Platforms

- A *Medical Application Platform* is a safety- and securitycritical real-time computing platform for...
 - Integrating heterogeneous devices, medical IT systems, and information displays via communications infrastructure, and
 - Hosting applications ("apps") that provide medical utility via the ability to acquire information from and update/control integrated devices, IT systems, and displays

Unique aspects of MAP domain

- Software based
 - Hardware is interchangeable
- Component oriented
- Unclear how FTA / FMEA might apply
- Early, firm notion of system architecture
 Standardized in UL 2800

Extension beyond medicine

- We use medicine in our examples
 - ... but this can extend to other compositional systems
- Core idea:
 - Integration of heterogeneous
 - Sensors,
 - Actuators, and
 - Complete systems,
 - by small chunks of software,
 - in a verifiable manner

Background

PCA Pump Interlock Architecture

Tooling Vision

Analyses and Regulatory Artifacts

Tooling Vision

Code Generation

- A. The app's architecture is specified in a suitable formalism
 - 1. Components as AADL Devices / Processes
 - 2. Connections are specified
 - RT/QoS Parameters are via AADL's propertyspecification mechanism
- B. The app is programmatically translated to Java and XML
 - 1. Only "Business Logic" is written by the developer
- C. The app is launched on a compatible MAP

Outline

Background

- Hazard Analysis In AADL
 - Correspondence with manual HA
 - STPA Fundamentals
 - Report Generation
- Architectural Integration

Hazard Analysis

Leveraging Semiformal Architectural Descriptions

Hazard Analysis in AADL

What if we could draw control loops with code?

Nancy Leveson. Figure 3.2, Page 66, Engineering A Safer World. MIT Press, 2011

Hazard Analysis in AADL

AADL Equivalents of STPA's Objects

Nancy Leveson. Figure 3.2, Page 66, Engineering A Safer World. MIT Press, 2011

Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

- 1. An inadvertent "Pump Normally" command is sent to the pump [PatientHarmed]
- 2. Commands are sent to the pump too quickly [PCADoS]

Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

App -> Pump: Pump Normally

Identifying Hazardous Control Actions

- Hazardous Control Action Table
 - Cross-product of control actions and STPA guidewords

Control Action	Providing	Not Providing	Applied too Long	Stopped too Soon	Early	Late
App -> Pump: Pump Normally	PH	Not Hazardous	РН	Not Hazardous	PH	Not Hazardous
App -> Disp: Patient Ok	BID	BID	BID	BID	BID	BID
PulseOx->App: Provide SpO ₂	Not Hazardous	PH, BID	Not Hazardous	PH, BID	Not Hazardous	PH, BID
PulseOx->App: Provide Pulse Rate	Not Hazardous	PH, BID	Not Hazardous	PH, BID	Not Hazardous	PH, BID

PH = Patient Harmed BID = Bad Info Displayed

Hazardous Causes and Compensations

Control Action: App -> Pump: Pump Normally

Providing:

- Inadequate Sensor Operation:
 - Cause:
 - Incorrect values are gathered from one of the physiological sensors
 - Compensation:
 - Rely on multiple sensed physiological parameters to provide redundancy
- Not Providing:
 - Not hazardous

The Annotated Control Loop

Where should we start?

Hazard Analysis

Annotating our Architectural Model

package PCA_Interlock_System public					
<pre>system PCA_Interlock_System end PCA_Interlock_System;</pre>					
<pre>system implementation PCA_Interlock_System.imp subcomponents</pre>					
pulseOx : device PulseOx_Interface::MAP_PulseOxHow would the control action be unsafe?					
appLogic : process PCA_Interlock_Logic::PCA_Inte connections What constraint would be violated?					
<pre>sp02_data : port pulse0x.Sp02 -> appLogic.Sp03; pump_cmd : port appLogic.pumpCmd -> pcaPump.cmd; What should the occurrence be named?</pre>					
annex EMV2 {** use types PCA_Interlock_Errors; properties What would cause this to occur?					
MAP_Error_Properties :: Occurrence => { Guideword => Providing; How can this occurrence be compensated for?					
<pre>ViolatedConstraint => PCA_Shutoff_Error_Properties::DontLe Title => "High Physio Params"; ErrorType => reference(InadvertentPumpNormally); Description => "One or more physiological parameters are the magny item any one upp regent to incorrectly believe the patient is healthy"; Compensation => "Physiological values are cross-checked with others";] applies to pump_cmd; **};</pre>					
<pre>end PCA_Interlock_System.imp; end PCA_Interlock_System;</pre>					

Report Generation Development

- Development of component architecture using AADL / OSATE2
- Addition of Hazard Analysis Annotations
- Automatic generation of STPA-Styled Hazard Analysis Report
- Very strong traceability between system and HA report

Example "In Progress" Report Online at:

http://santoslab.org/pub/mdcf-architect/HazardAnalysis.html

Automatic Report Generation

Fundamentals

Accident Levels

1. AL1: Death or serious injury to a human

Accidents

1. A1: Patient is killed or seriously injured. [AL1]

Hazards

H1: Commands for dosage exceeding the patient's tolerance are sent to the pump. [A1]
 H2: Incorrect information is sent to the display. [A1]

Safety Constraints

- 1. C3: The app must inform the display of the pump command status. [H2]
- 2. **C1**: The app must command the pump to stop if the patient's vital signs indicate over-infusion. [H1]
- 3. C2: The app must inform the display of the status of the patient's vital signs. $[H_2]$

Automatic Report Generation

Unsafe Control Action Table

— Unsafe Control Actions —

CONTROL ACTION	PROVIDING	NOT PROVIDING	APPLIED TOO LONG	STOPPED TOO SOON	EARLY	LATE
spoz_disp	H2 (Wrong Values (Undetected))					
pulseox_fail_disp						
etco2_logic						
pumpcommand_disp						
respiratoryrate_logic	H1 (Wrong values (Detected)), H1 (Wrong values (Detection Dropped))		H1 (Network Drop)			
capnograph_fail_logic		H1 (Device Alarm Unsent)				
spoz_logic	H1 (Wrong values (Detected)), H1 (Wrong values (Detection Dropped))		H1 (Network Drop)			
pulseox_fail_logic		H1 (Device Alarm Unsent)				
pumpcommand_logic	H1 (High Physio Params)		H1 (Network Drop)	H1 (Software Error)	H1 (Software Error)	H1 (Software Error), H1 (Network Lag)
etco2_disp						
respiratoryrate_disp						
capnograph_fail_disp						

Outline

Background

- Hazard Analysis In AADL
- Architectural Integration
 - EM Fault Types
 - Deeply Integrated Hazard Analysis
 - Tool Support

STPA's Causality Guidewords

Annotated Control Loop

Nancy Leveson. Figure 4.8, Page 93, Engineering A Safer World. MIT Press, 2011

AADL EM Fault Types

Type Hierarchy

Error Library Type	STPA Error Type	App Error Type				
Errors with Physiological Monitors						
LateDelivery	DelayedOperation	SpO2ValueLate				
IncorrectValue	IncorrectInformation	SpO2ValueLow				
N/A	NoInformation	NoSpO2Data				
Errors with App Logic						
ServiceCommission	InnapropriateCtrlAction	InadvertentPumpNormally				
ServiceOmission	MissingCtrlAction	InadvertentPumpMinimally				
AADL Standard Error Types	STPA Guidewords	App Specific Error Types				

AADL EM Fault Types

App Specific Error Library

```
annex EMV2
```

```
{**
```

error types

InadvertentPumpNormally : type extends MAP_Errors::InappropriateControlAction;

```
-- Could also be inadequate feedback
Sp02ValueHigh : type extends MAP_Errors::InadequateSensorOperation;
Sp02ValueLow : type extends MAP_Errors::InadequateSensorOperation;
ETC02ValueHigh : type extends MAP_Errors::InadequateSensorOperation;
RespiratoryRateLow : type extends MAP_Errors::InadequateSensorOperation;
RespiratoryRateHigh : type extends MAP_Errors::InadequateSensorOperation;
DeviceAlarmFailsOn : type extends MAP_Errors::InadequateSensorOperation;
DeviceAlarmFailsOff : type extends MAP_Errors::InadequateSensorOperation;
end types;
**};
end PCA_Shutoff_Errors;
Application specific:
Defined by app risk
management process
```


Integrated Hazard Analysis

Using our fault type

```
package PCA_Interlock_System
public
system PCA Interlock System
end PCA_Interlock_System;
system implementation PCA Interlock System.imp
subcomponents
 pulseOx : device PulseOx Interface::MAP PulseOx Interface.imp;
 pcaPump : device PCAPump_Interface::MAP_PCAPump_Interface.imp;
 appLogic : process PCA Interlock Logic::PCA Interlock Logic.imp;
connections
 spo2 data : port pulseOx.SpO2 -> appLogic.SpO2;
 pump cmd : port appLogic.pumpCmd -> pcaPump.cmd;
annex EMV2 {**
                                                      What specific fault will result?
 use types PCA Interlock Errors;
 properties
 MAP Error Properties::Occurrence => [
   Guideword => Providing;
   ViolatedConstraint => PCA_Shutoff_Enror_Properties::DontLetPumpRunWhenUnsafe:
   Title => "High Physio Params"; ...
   ErrorType => reference(InadvertentPumpNormally);
   Description => "One or more physiological parameters are too high, leading the app logic to
incorrectly believe the patient is healthy";
   Compensation => "Physiological values are cross-checked with othe
                                                                     What can we do with our
 ] applies to pump cmd;
                                                                           model + specific
**};
                                                                          fault information?
end PCA Interlock System.imp;
end PCA_Interlock_System;
```

Where would the bad control action come from?

Integrated Hazard Analysis

Specification Step 1: Out Propagation

Where would the bad control action come from?

Integrated Hazard Analysis

Specification Step 2: In Propagation

Integrated Hazard Analysis

Specification Step 3: Relation between incoming and outgoing

Where should we go now?

Where should we go now?

Integrated Hazard Analysis

OSATE Remembers A Neglected Connection

Tool Supported Process

Interaction between Report and Model

Further Reading

- Source available online at <u>https://github.com/santoslab/aadl-translator</u>
- Installable into OSATE2 via update site: <u>http://santoslab.org/pub/mdcf-architect/</u> <u>updatesite</u>
- Full documentation online at <u>http://santoslab.org/pub/mdcf-architect</u>
- Publications online at <u>http://people.cis.ksu.edu/~samprocter</u>

Using STPA to Support Risk Management for Interoperable Medical Systems

STAMP Workshop 2015, MIT

Sam Procter, John Hatcliff SAnToS Lab Kansas State University Anura Fernando Underwriters Laboratories Sandy Weininger US Food and Drug Administration

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholarin-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.

Referee Comments

- Doesn't use of AADL imply a fully specified architecture?
 - No. Though some architectural constraints are implied by the domain (eg, componentbased architecture, use of underlying middleware for communication, etc.), architectures in AADL can be rapidly modified. Constructing (or modeling) an architecture in AADL is very much a "design phase" task.

Referee Comments

- How can apps be certified independently of their environment?
 - Much the same way that medical devices are currently certified under some set of assumptions (collectively referred to as *intended use*), we imagine that MAP apps will have (contra)indications for use
 - There are requirements engineering issues to be addressed, this is a key part of the UL 2800 standardization effort

Referee Comments

- What about interactions between devices / apps that are not over input or output ports?
 - We rely heavily on a notion of platform to isolate components from one another. This platform technology, developed by our King et al at UPenn, aims to provide complete separation between components (similar to separation kernels / partitioning middleware used in avionics)
 - AADL can also model unintended / indirect interactions, like heat