Intelligent-Controller Extensions to STPA

Dan "Mirf" Montes

Disclaimer

The views expressed in this document are those of the author and do not reflect the official position or policies of the United States Air Force, Department of Defense, or Government.

88ABW-2015-1004 All images courtesy of Google

Overview

- Motivation
- Work
- Snapshot

Background

The increase of interacting humans and autonomous components in complex systems necessitates rigorous methods to classify information about the **controllers** in a system.

STPA, although advanced in terms of safety analysis, still oversimplifies the human's role in complex

systems.

STPA Gaps

- Detailed fundamental human-engineering considerations missing from the analysis
- 2) Controller process-model investigation does not capture higher levels of abstraction used in making robust and flexible decisions
- 3) No current method in the analysis to summarize the impact of social and organizational influences

Human Requirements

Detailed fundamental human-engineering considerations missing from the analysis

MIL-HDBK-1908B – Human Factors Definitions

MIL-STD-1472G – Human Engineering

MIL-STD-46855A – Human Engineering for the Military

MIL-HDBK-87213A – Visual Displays

MIL-STD-1787C – Display Symbology

MIL-STD-411F – Aircrew Alerts

MIL-STD-1797A – Flying Qualities

MIL-STD-1474D – Noise Limits

MIL-HDBK-516C – Airworthiness

Air Force HSI Handbook

Air Force HSI Pocket Guide

NASA HSI Overview

Standards

Guidance

Best Practices

STPA Gaps

- 1) Detailed fundamental human-engineering considerations missing from the analysis
- Controller process-model investigation does not capture higher levels of abstraction used in making robust and flexible decisions
- 3) No current method in the analysis to summarize the impact of social and organizational influences

More to the process model? Motivation

 Controller process-model investigation does not capture higher levels of abstraction used in making robust and flexible decisions

Adapting in Systems

Optimized – System can satisfy fixed objectives in a fixed environment

Robust – System can satisfy fixed objectives and adapt to changes or uncertainties in the environment or the system itself

Flexible – System can also adapt to changes or uncertainties in objectives

Saleh et al., 2003

STPA Gaps

- 1) Detailed fundamental human-engineering considerations missing from the analysis
- 2) Controller process-model investigation does not capture higher levels of abstraction used in making robust and flexible decisions
- No current method in the analysis to summarize the impact of social and organizational influences

3) No current method in the analysis to summarize the impact of social and organizational influences from outside the operating process

Objectives

- Recognize existing STPA human models & analyses
- Extend <u>analysis</u> to address STPA gaps
- Stay general to any controller

Previous Human Models

Work

Leveson, Engineering a Safer World

Most Recent Model

Thornberry, 2014

Human Analysis

Most Recent Analysis

Thornberry, 2014

- Address STPA gaps
- Add refinement to the controller investigation
- Maintain exhaustiveness

Analysis Extension

Behavior

How the controlled process interacts with the environment

Model of Controlled Process

Mode

Mutually exclusive set of system behaviors

Model of Automation/Context

Value

Higher-level goals that are driving the local (safety) constraints

Means-Ends Relationships

Supervisory Structure	The control relationships and communication links in the system hierarchy.
	Which controllers currently have or share priority over each controlled component?
	Which controlled components may apply <u>authority limits</u> and under what circumstances? Ca those limits be overridden? How will conflicts be decided (i.e., who should have the final authority?)
Component Operating Mode	The set of algorithms that components under my control can use to exert control over their process(es).
	What are the physical or logical assumptions and constraints associated with the component's current operating mode?
	What data in the information set is the controlled component using to inform its model?
	What input/and output format am I using with my controlled component(s)?
Mission Phase	The specified set of related behaviors of the controlled system representing its operational state.
	What mission phase is the system in (e.g., takeoff, cruise, etc.)
	Do all controllers know the current mission phase?
	Does a change in mission phase mode cause a change in supervisory structure and/or component operating modes (including input/output formats)?
Leveson, 1997	ROBUSTNESS

Values

What is the controller's understanding of how values at higher levels of the means-ends hierarchy map to objectives at the controller's level?

Are there any values the controller personally maintains that originate outside the system?

Example: "get-there-itis"

Rasmussen, 1994

Too Much Flexibility?

Exploratory behavior!

Normalization of deviance!

People might tradeoff performance of one behavior for another (or use modes in ways not intended by the designer)

This may inadvertently violate higherlevel constraints that should not be violated

Extrinsic Factors

Just for Humans...

<u>Workspace</u>

- Climate (light, temp, noise)
- Physiology (inertial, vibrations)
- Anthropometry / ergonomics
- Task workload

Variability

- Age
- Perceptual acuity
- Natural attention capability
- Disposition
- Health, injury, disability, disease
- Psychological / emotional
- Fatigue, physical stress, sleep
- Drugs, medications

What is this?

Influence

Influence

TEMPORALITY

<u>Influence</u> Prior to Cycle of Interest

Broad Culture

<u>Tacit</u> Philosophies Value Weights Professional Culture

<u>Tacit</u> Beliefs Motivations

Explicit Org. Mission Long-Term Vision Behavioral Standards

Tacit
Best Practices
Encouragements

Explicit
Org. Goals
Expectations
Incentives
Policy Emphases

Rules & Techniques

<u>Tacit</u> Training / Practice Workarounds

Explicit
Design/Code*
Use Policy
Procedures
Instructions

Single Cycle Objectives

Explicit
Mission Load*
Pre-Briefs
Cards

ROEs

<u>Control</u> During Cycle of Interest

Toggled Commands Sustained Commands

Human Only

All Controllers

* Software specific

AF HSI Handbook (2009)

- Personnel
 - Selection, attributes (e.g., acuity, cognition), background, skills
- Training tactics, decision-making
- Human Factors
 - Workload, workspace, displays, anthro/ergo, automation
- Habitability
 - Living conditions, sleep, stress
- Environment/OSHA/Safety
 - HAZMAT, noise, moving parts, wiring

Explicit-Influence Map

Conclusion

- Gaps addressed
 - √ Human-engineering considerations
 - ✓ Process model
 - ✓ Socio-organizational and pre-cycle influences
- Any good SE management system can identify, document, and maintain the information elicited with the extended analysis

Special thanks to

Dr. Cody Fleming

Ms. Aubrey Samost

Mr. Dajiang Suo

Mr. Adam Williams

