

USING STAMP TO IMPROVE PLATFORM SAFETY

Robert J. de Boer 2014 STAMP Conference March 27th, 2014 MIT, Cambridge, MA

CREATING TOMORROW

CONTENTS

- Problem statement
- Theoretical foundation
- Research design
- Results:
 - Assessment of control loop effectiveness using STAMP
 - Safety Performance
- Conclusions

PROBLEM STATEMENT

www.international.hva.nl

GROUND SERVICES EXECUTES AIRCRAFT TURN-AROUND

- Baggage Services
- Pushback and Towing
- Catering and Onboard Supply
- Cleaning
- Aircraft refueling
- Water and toilet services

HIGH NUMBER OF RULE VIOLATIONS

6

PLATFORM THREATS INCLUDE MOSTLY ORGANISATIONAL ISSUES

- Non-adherence to procedures
- (Macho) behaviour
- Performing activities beyond procedures
- Cargo leaks
- High personnel turnover (experience)
- Early taxi-out
- Short turnaround times
- Differences in procedures
- Driving
- Thunderstorms

THEORETICAL FOUNDATION

www.international.hva.nl

ORGANISATIONS ARE COMPLEX SYSTEMS

Complex system characteristics

- Are open to influences from the environment and vice-versa
- Components are ignorant of system behavior and effects of own actions on it
- Interaction is complex, not necessarily the components
- Complex systems not in static equilibrium: feedback loops required
- History or path dependence (non-Markov)
- Non-linear interactions ("Butterfly effect")
- New structures are generated "internally"

EXAMPLE OF EMERGENT BEHAVIOR: THE CASE OF THE LATE-COMING PARENTS

Rule violation in day care

- 10 day-care centers in Israel
- Operate 07:30 16:00
- Frequent late parents (1~2 daily)
 - Teacher has to stay
 - No consequences for parents
 - Parents rarely came after 16:30
- Solution: introduce fine for delay > 10 minutes

INTRODUCTION OF FINES LED TO A UNYIELDING INCREASE IN RULE VIOLATION

Gneezy and Rustichini 2000

PROBING AND SENSING IS ESSENTIAL IN THE COMPLEX DOMAIN

The Cynefin framework

STAMP SEEMS A SUITABLE TOOL TO ASSESS SAFETY MANAGEMENT SYSTEMS

- Targeted at complex sociotechnical systems
- Focuses on safety as emergent behavior
- Utilizes a feedback control loop perspective
 - To probe / sense / respond
 - To maintain equilibrium
 - Sensitive to "weak signals"

"WEAK SIGNALS"

- A violation of a safety contraint with no / little consequence
- Therefore very little attention
- May be a precursor for a more serious incident at some future point in time

example

CAPE

ettle Cooke

POTATO CHIPS

40% REDUCE

STAMP ASSUMES AN <u>EFFECTIVE</u> CONTROL LOOP TO ENFORCE SAFETY CONSTRAINTS

CONTROL STRUCTURE REFLECTS SCOPE OF INTEREST

STAMP DOES NOT EXCLUDE FEEDFORWARD

18

RESEARCH DESIGN

www.international.hva.nl

RESEARCH AIM: CONFIRM PREDICTED RELATION

Control loop

effectiveness

Additional aims:

- Use prediction to enhance safety at a Ground Service Provider
- Adapt STAMP framework if and where necessary to support the diagnostic capabilities of the framework.

RESEARCH METHOD: LONGITUDINAL SINGLE CASE STUDY

- Retrospective (2010) versus current situation
- @ Dutch Ground Service Provider (different to original GSP)
 - Semi-structured interviews
 - Personal experience of the junior researcher as a platform employee
- Use of STPA according to Leveson (2013)

ASSESSMENT OF CONTROL LOOP EFFECTIVENESS USING STAMP

www.international.hva.nl

HAZARDS AND SAFETY CONSTRAINTS

- In operational circumstances, safety regulations generally exist to enforce:
 - Aviation safety
 - Occupational health.
- Hazard: "a system state or set of conditions that together with a worst-case set of environmental conditions, will lead to an accident (loss)"

➔ Every violation of the safety regulations (assuming these are correctly defined) constitutes a hazard

"Enforce safety constraints on system behavior" to avoid hazards
 Safety regulations = safety constraints

CONTROL STRUCTURE & POTENTIAL FLAWS (2010)

Legend:

- A. Sensor
- B. Process model
- C. Setpoint
- D. Control algorithm
- E. Actuator
- F. Out of range disturbances
- G. Cognitive resistance

SAFETY* IS MANAGED THROUGH SIX GENERIC MANAGEMENT CONTROL ACTIONS

- 1. Set goals and direction
- 2. Establish work processes and standards
- 3. Staff, schedule and train
- 4. Manage facility and equipment
- 5. Allocate financial resources; and
- 6. Monitor and evaluate performance.

ALLOCATION OF SAFETY REQUIREMENTS

Component	Allocated safety constraint			
(Controlled Process)	(Compliant execution of process)			
Sensor loop 1	Receival, transmission and presentation of compliancy of process to Platfom coordinator			
Process Model loop 1	Platfom coordinator can identify gap between current and target compliancy based on information			
Control Algorithm loop 1	Platfom coordinator can generate required control actions as a function of gap			
Actuator loop 1	Receival, transmission and presentation of control signal at controlled process			
Sensor loop 2	Receival, transmission and presentation of current state of platform coordinator to supervisor			
Process Model loop 2	Supervisor can identify gap between current and target state of platform coordinator based on information			
Control Algorithm loop 2	Platfom supervisor can generate required control actions as a function of gap			
Actuator loop 2	Receival, transmission and presentation of control signal at platform coordinator			
Set Point	Implicit or explicit target state(s) for platform coordinator process and process compliancy available			

CONTROL LOOP EFFECTIVENESS TABEL

	Mgt task 1	Mgt task 2	•••	Mgt task 6
LOOP 1				
Set Point				
Sensor				
Process model				
Control Algorithm				
LOOP 2				
				0

SUMMARY OF CONTROL LOOP EFFECTIVENESS

2010: Poor

- Platform coordinator is not executing the safety management tasks
- Does not accept platform safety as his responsibility
- Does not initiate interventions.
- Is not instructed otherwise by platform supervisor
- Limited analysis of out-ofscope disturbances

CURRENT CONTROL STRUCTURE & POTENTIAL FLAWS

Legend:

- A. Sensor
- B. Process model
- C. Setpoint
- D. Control algorithm
- E. Actuator
- F. Out of range disturbances
- G. Cognitive resistance

SUMMARY OF CONTROL LOOP EFFECTIVENESS

2010: Poor

- Platform coordinator is not executing the safety management tasks
- Does not see platform safety
 as his responsibility
- Does not initiate interventions.
- Is not instructed by platform
 supervisor
- Limited analysis of out-ofscope disturbances

2013: Adequate

- Safety management control loop is vastly improved
- Responsibilities have been assigned
- Control actions are effectuated.
- However, Q&S Department in staff role
- Does not hold executive rights
- Limited analysis of out-ofscope disturbances

SAFETY PERFORMANCE

www.international.hva.nl

COMPARISON OF SAFETY PERFORMANCE

2010: Poor

- Two damages to customer aircraft requiring major repairs,
- A separation loss for Schengen and non-Schengen passengers
- Number of significant safety audit findings from a client airline.

2013: Good

- High reporting rates of both risks and occurrences
- Zero incidents with damage or injury.
- Audit reports are without significant findings.

CONCLUSIONS

www.international.hva.nl

RELATION BETWEEN EFFECTIVENESS OF CONTROL LOOP AND SAFETY PERFORMANCE

ENHANCE SAFETY AT A GROUND SERVICE PROVIDER

- Retrospective (2010)
 - Poor safety management across all six control actions
 - Actions were taken only after several serious incidents
- Current situation
 - Safety management assigned to the Quality & Safety Department.
 - However, allocated a staff role, do not hold executive rights
- Future: plan to allocate safety role to line management
 - Redo analysis, take safety constraints into account

STAMP METHODOLOGY SLIGHTLY MODIFIED FOR MANAGEMENT CONTEXT AND CLARITY

Original

- Establish the system
 engineering foundation
 - Scope relevant losses, identify hazards, specify safety requirements
 - Describe the control structure
- Identify potentially unsafe control actions;
- Create safety requirements
- Determine how each potentially hazardous control action could occur.

Modified

- 1. Hazards and safety requirements
- 2. Functional control structure
- 3. Control actions (6 generic)
- 4. Allocation of safety requirements to components
- 5. Control loop effectiveness

FURTHER RESEARCH

- Continued Research / application of STAMP to supervisory / management processes
 - Other Ground Service Company
 - NedTrain maintenance plant
 - EASA: oversight of SMS at maintenance service providers
 - Various smaller SME maintenance facilities
- Multi-agent modeling incorporating social interaction
 - Using current process state as a vector, and applying mathematics to model control loop
 - With Delft University of Technology & Free University Amsterdam
- Instability of control loop (time, gain issue)
- Alignment with work at MIT

DO TRY THIS AT HOME

- Paper and .ppt available
- Interested in testing this approach?
- Send me an email at <u>rj.de.boer@hva.nl</u>

Professor of Aviation Engineering: Robert J. de Boer, rj.de.boer@hva.nl Website: hva.nl/kenniscentrum-dt/onderzoek/aviation/

REFERENCES

- [1] D. Fouda and I. Maragakis, "Significant improvements for Global Aviation Safety in 2013." EASA, Cologne, Germany, 2014.
- [2] M. Verschoor and A. Young, "Willingness to report occurences in civil aviation in the Netherlands," the Hague, the Netherlands, 2011.
- [3] A. D. Balk and J. W. Bossenbroek, "AIRCRAFT GROUND HANDLING AND HUMAN FACTORS (NLR-CR-2010-125)," Amsterdam, the Netherlands, 2010.
- [4] R. J. de Boer, B. Koncak, R. Habekotté, and G.-J. van Hilten, "Introduction of ramp-LOSA at KLM Ground Services," in *Human Factors of Systems and Technology*, 2011.
- [5] J. Ma, M. Pedigo, S. Louis, L. Blackwell, K. Gildea, K. Holcomb, and C. Hackworth, "The Line Operations Safety Audit Program : Transitioning From Flight Operations to Maintenance and Ramp Operations DOT/FAA/AM-11/15," Washington, DC, 2011.
- [6] F. W. Guldenmund, "(Mis)understanding Safety Culture and Its Relationship to Safety Management.," *Risk Anal.*, vol. 30, no. 10, pp. 1466–80, Oct. 2010.
- [7] A. R. Hale, F. W. Guldenmund, P. L. C. H. van Loenhout, and J. I. H. Oh, "Evaluating safety management and culture interventions to improve safety: Effective intervention strategies," *Saf. Sci.*, vol. 48, no. 8, pp. 1026– 1035, Oct. 2010.
- [8] F. W. Guldenmund, "Understanding and Exploring Safety Culture," Delft University of Technology, 2010.
- [9] A. Hale and D. Borys, "Working to rule, or working safely? Part 1: A state of the art review," *Saf. Sci.*, vol. 55, pp. 207–221, Jun. 2013.
- [10] A. Hale and D. Borys, "Working to rule or working safely? Part 2: The management of safety rules and procedures," Saf. Sci., vol. 55, pp. 222– 231, Jun. 2013.
- [11] N. G. Leveson, "Applying systems thinking to analyze and learn from events," *Saf. Sci.*, vol. 49, no. 1, pp. 55–64, Jan. 2011.
- [12] P. M. Salmon, R. McClure, and N. a. Stanton, "Road transport in drift? Applying contemporary systems thinking to road safety," *Saf. Sci.*, vol. 50, no. 9, pp. 1829–1838, Nov. 2012.
- [13] N. G. Leveson, Engineering a safer world: Systems thinking applied to safety. Cambridge, MA: MIT Press, 2011.

- [14] N. G. Leveson, "An STPA Primer," Cambridge, MA, 2013.
- [15] L. Pelegrín, "Evaluating Project Safety (System Engineering and Safety Management) in an Organization," Heriot-Watt University, 2012.
- [16] I. M. Dokas, J. Feehan, and S. Imran, "EWaSAP: An early warning sign identification approach based on a systemic hazard analysis," *Saf. Sci.*, vol. 58, pp. 11–26, Oct. 2013.
- [17] C. Harrison, M. Spencer, J. Thomas, N. Leveson, and C. Wilkinson, "Safety assurance in NextGen and complex transportation systems q," Saf. Sci., vol. 55, pp. 173–187, 2013.
- [18] K. Kazaras, K. Kirytopoulos, and A. Rentizelas, "Introducing the STAMP method in road tunnel safety assessment," Saf. Sci., vol. 50, no. 9, pp. 1806–1817, Nov. 2012.
- [19] N. G. Leveson, N. Dulac, B. Barrett, P. J. Carroll, and P. J. Cutcher-Gershenfeld, "Risk Analysis of NASA Independent Technical Authority," Cambridge, MA, 2005.
- [20] M. C. Davis, R. Challenger, D. N. W. Jayewardene, and C. W. Clegg, "Advancing socio-technical systems thinking: a call for bravery.," *Appl. Ergon.*, vol. 45, no. 2, pp. 171–80, Mar. 2014.
- [21] K. J. Astrom and R. M. Murray, *Feedback systems: An Introduction for Scientists and Engineers.* Princeton: Princeton University Press, 2012.
- [22] S. Dekker and S. Pruchnicki, "Drifting into failure: theorising the dynamics of disaster incubation," *Theor. Issues Ergon. Sci.*, vol. 0, no. 0, pp. 1–11, Nov. 2013.
- [23] R. J. de Boer, "Seneca's Error: An Affective Model of Cognitive Resistance," Delft University of Technology, Delft, 2012.
- [24] D. Kahneman, *Thinking, fast and slow,* 1st ed. New York: Farrar Straus & Giroux, 2011.
- [25] P. N. Johnson-Laird, *How we reason*. Oxford: Oxford University Press, USA, 2006.
- [26] "Management," *Wikipedia, the free encyclopedia.* [Online]. Available: http://en.wikipedia.org/wiki/Management.
- [27] J. Helferich, "Radiation Oncology Safety An Application of 'Managerial' STPA," in STAMP Conference, 2013.
- [28] H. Fayol, General and Industrial Management. New York, NY: Pitman Publishing Corporation, 1949.
- [29] J. Dul and T. Hak, Case study methodology in business research. Oxford: Butterworth-Heinemann, 2008.
- [30] P. Underwood and P. Waterson, "Systemic accident analysis: examining the gap between research and practice.," Accid. Anal. Prev., vol. 55, pp. 154–64, Jun. 2013.

ROBERT J. DE BOER MSC PHD

Hogeschool van Amsterdam Amsterdam University of Applied Sciences

Professor of Aviation Engineering

- Research into:
 - Lean maintenance
 - Composite defect detection
 - **Collaboration & supervision** for aviation safety

Education:

- MSc HF in Aerospace Engineering ٠ (1988), Delft University of Technology
- PhD (2012), ٠ Delft University of Technology

Blue Wave Consulting Company Enjoy your ingenuity

Consultant / trainer

- Collaboration in sociotechnical systems
- Engineering management / • Systems engineering

Previous experience:

- Director of Engineering, Fokker Aerostructures
- Consultant A.T. Kearney
- **Unilever** Engineering

CONTROL THEORY 101

www.international.hva.nl

SIMPLE DIRECT FEEDBACK CONTROL

SIMPLE DIRECT FEEDBACK CONTROL

SIMPLE FEEDFORWARD CONTROL

TRADITIONAL FEEDBACK CONTROL USING SENSORS AND ACTUATORS

46

FEEDBACK

- Feedback makes a system insensitive to
 - external disturbances
 - variations in its individual elements.
- Without needing to understand the nature of the disturbances

ADVANTAGE OF FEEDBACK CONTROL: ROBUSTNESS TO UNCERTAINTY

DISADVANTAGES OF FEEDBACK

- Instability
- Measurement noise
- Added complexity
- Cost of sensing, computation and actuation

FEEDBACK REQUIRES A SETPOINT

FEEDBACK IS LIMITED TO CHOSEN PARAMETERS

EFFECT OF TIME PRESSURE

EFFECT OF FATIGUE

54

EFFECT OF BAD WEATHER

POOR CONTROL LOOP EFFECTIVENESS (2010)

	task 1 Set goals and direction	task 2 Establish work processes and standards	task 3 Staff, schedule and train	task 4 Manage facility and equipment	task 5 Allocate financial resources	task 6 Monitor and evaluate performance
1A Sensor	Positive: Aim to report as many risks and incidents as possible is well understood. Negative:	Positive: All employees know how to report risks and incidents Negative: Reporting sometimes forgotten or ignored	Positive: All employees know how to report incidents Negative: There is not always sufficient time between flights to report, so that the incident is	Positive: Reporting system and email always available Negative:	N/A	Positive: supervisor platform actually monitors reports of incidents. Negative:but he does not see the proactive (risk) reports
Ĺ			forgotten			

VERIFICATION MATRIX (2010)

task 1 Set goals direction	s and	task 2 Establish work processes and standards	task 3 Staff, schedule and train	task 4 Manage facility and equipment	task 5 Allocate financial resources	task 6 Monitor and evaluate performance
	e: The ator does platform s his bility s not	Positive: Negative: The platform coordinator does not see the an intervention to improve compliance to safety procedures as his responsibility	Positive: The platform coordinator understands how to intervene in case of resource mismatches Negative: The platform coordinator does not initiate training of safety procedures	Positive: Negative: The platform coordinator does not initiate the management of facility and equipment as his task	Positive: Negative: The platform coordinator does not have budget responsibility	Positive: Negative: The platform coordinator does not take initiatives to monitor platform safety

VERIFICATION MATRIX (2010)

	task 1 Set goals and direction	task 2 Establish work processes and standards	task 3 Staff, schedule and train	task 4 Manage facility and equipment	task 5 Allocate financial resources	task 6 Monitor and evaluate performance
Error 1E Actuator	N/A	N/A	Positive: The platform coordinator intervenes in case of resource mismatches Negative:	N/A	N/A	N/A

VERIFICATION MATRIX (2010)

	task 1 Set goals and direction	task 2 Establish work processes and standards	task 3 Staff, schedule and train	task 4 Manage facility and equipment	task 5 Allocate financial resources	task 6 Monitor and evaluate performance
Error F Out of Range process	Positive:	Positive:	Positive:	Positive:	Positive:	Positive:
	Negative: The	Negative: The	Negative: The	Negative: The	Negative: The	Negative: The
	platform	platform	platform	platform	platform	platform
	coordinator does	coordinator does	coordinator does	coordinator does	coordinator does	coordinator does
	not prepare for	not prepare for	not prepare for	not prepare for	not prepare for	not prepare for
	out of range	out of range	out of range	out of range	out of range	out of range
	disturbances	disturbances	disturbances	disturbances	disturbances	disturbances

CONTROL LOOP EFFECTIVENESS (2010)

	task 1 Set goals and direction	task 2 Establish work processes and standards	task 3 Staff, schedule and train	task 4 Manage facility and equipment	task 5 Allocate financial resources	task 6 Monitor and evaluate performance
Error 1G Cognitive Resistance	Positive: Negative: The platform coordinator does not see platform safety as his responsibility and does not react to signals of decaying safety margins	•	Positive: Negative: The platform coordinator does not see the training of safety procedures as his responsibility	Positive: Negative: The platform coordinator does not see the management of facility and equipment as his task	Positive: Negative: The platform coordinator does not have budget responsibility	Positive: Negative: The platform coordinator does not see monitoring platform safety as his responsibility