STPA-SEC
for
Cyber Security / Mission Assurance

25 March, 2014

William E. Young, Jr,
PhD Candidate, Engineering Systems Division
Systems Engineering Research Lab
Advisor: Prof N. Leveson

WYOUNG@MIT.EDU © Copyright William Young, 2014
Overview

• Motivation

• STPA-Sec

• Real World Insights to Date

• Conclusion
Mission Assurance / Cyber Security?

Sample Line of Operation

Establish and Operate Intermediate Bases → Secure Entry Points → Secure and Operate Air and Sea Ports → Seize Key Terrain → Secure Routes to Capitaltown → Secure Capitaltown

Actions on Decisive Points and/or Nodes

Objective

Military “Mission”

Complex “System” of Activities

Physical System

Complex “System” of Components

STPA-Sec Allows us to Analyze Both of these for Security

Reference: US Defense Dept Joint Publication 5.0
Motivation: Where Should We Place Our Emphasis?

- Avoid Vulnerabilities to Max Extent
- Threat Countermeasure At Endgame

Good Mission (& System) Development Emphasizes Avoidance Not Reaction
Problem: Begin to Address Security (Mission Assurance) from Start of System Engineering Efforts (Before Design)

System Engineering Phases

“Abstract Systems”

Concept Requirements Design

Secure Systems Thinking System Security Requirements Secure Systems Engineering

“Physical Systems”

Build Operate

Cyber Security “Bolt-on” Attack Response

Security Approaches

Goal: Develop Systems That Enable us to More Securely Satisfy Needs
• Use a functional decomposition of mission as the “Controlled Process”
 • Complex system of activities
 • Process completion represents mission accomplishment
• Information is required (allows control)
• Four types of functional system vulnerabilities:
 • Required control information missing (Availability violation)
 • Incorrect control information provided (Integrity violation)
 • Proper control information given too early, too late
 • Proper control information stops too soon or applied too long

(Leveson, 2003); (Leveson, 2011)
Approach: STPA-Sec (System-Theoretic Process Analysis for Security)

- Modifies Leveson’s STPA successfully used to improve safety
- A top-down, system engineering technique
 - Can be used from beginning of project
- Identifies security vulnerabilities and requirements
- Identifies scenarios leading to violation of security constraints; use results to refine system concept to be more secure
- Can address technical and organizational issues
- Supports a security-driven concept development process where
 - Vulnerability analysis influences and shapes early design decisions
 - Vulnerability analysis iterated and refined as concept evolves
100k’ View of STPA-Sec

• Establish security engineering analysis foundation **(WHY)**
 – Determine unacceptable system losses
 – Determine vulnerabilities that can lead to losses
 • Vulnerable system state + worst case environmental conditions → Loss
 – Develop High Level Functional Control Structure
• Perform analysis on Control Actions **(WHAT)**
 – Find those control actions (information) that, **if** disrupted (wrong / missing), lead to vulnerable states previously identified
• Identify disruption scenarios **(HOW)**
• Adjust concept based on insights

Top-down System Engineering Process, Only Deep-Dive Where Necessary
Determining Unacceptable Losses

• Ultimately come from mission “owner”
 – Subject matter experts can assist
• Very high level initially
• Will impact how mission is conducted
• Example
 – Injure or kill non-combatants
 – Corporate reputation irreparably damaged
 – Loss of PII
 – Expose residents to dangerous radiation
Determine System Vulnerabilities that Can Lead to Losses

• Establish foundation for analysis
 – Determine system vulnerabilities
 • “System state or set of conditions that, together with a particular set of worst-case environmental conditions, will lead to a loss”
 • Similar to Swiderski & Snyder Threat Modeling
 – “Set of conditions that must occur or be true for a threat to be realized”
 • Should be small, exhaustive set
 – “Designating a weapon impact area containing non-combatants”
 – “Customer PII exposed to unauthorized individuals”
 – “Inadvertently releasing radiation”

Focus: Identify and Control System Vulnerable States to Prevent Intentional (and Unintentional) Losses
Specify the Required Functional Constraints (Initial Functional Security Requirements)

• Based on Vulnerabilities
• Identify necessary constraints on overall system function
• Examples
 – “Weapons must not be designated on areas containing non-combatants”
 – “Customer PII must not be disclosed to unauthorized individuals”
 – “Radiation must not be inadvertently released”

Note That We Haven’t Talked About Technology Yet
Develop High-Level Functional Control Structure

• Wide variety of ways to accomplish

• Start broadly and refine

• Must capture the control information necessary to execute mission or system function
Example from Fictional Missile Defense System
(Based on Grady Lee’s work)
Control Action Analysis

<table>
<thead>
<tr>
<th>Unsafe/Unsecure Control Actions</th>
<th>Not Providing Causes Vulnerability</th>
<th>Providing Incorrectly Causes Vulnerability</th>
<th>Wrong Timing or Order Causes Vulnerability</th>
<th>Stopped Too Soon or Applied Too Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close MSIV not provided when there is a rupture in the SG tube, leak in main feedwater, or leak in main steam line [V-2, V-1, V-3]</td>
<td>Close MSIV provided when there is no rupture or leak [V-4]</td>
<td>Close MSIV provided too early (while SG pressure is high): SG pressure may rise, trigger relief valve, abrupt steam expansion [V-2, V-3]</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Why Might A Trained Operator Issue the Wrong Command When There is NO Rupture in the System?

- Stop too soon or applied too long
- Unsafe/unsecure control actions
- Not providing causes vulnerability
- Providing incorrectly causes vulnerability
- Wrong timing or order causes vulnerability
Inadequate Control
Algorithm
(Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Process Model
(inconsistent, incomplete, or incorrect)

Inappropriate, ineffective, or missing control action

Inadequate or missing feedback

Feedback Delays

Sensor

Inadequate operation

Incorrect or no information provided

Measurement inaccuracies

Actuator

Inadequate operation

Delayed operation

Controlled Process

Component failures
Changes over time

Unidentified or out-of-range disturbance

Process input missing or wrong

Conflicting control actions

Controller

Process output contributes to system hazard

WYOUNG@MIT.EDU © Copyright William Young, 2014
Control Algorithm
(Flaws in creation, process changes, incorrect modification or adaptation)

Operator

Mental Model
(inconsistent, incomplete, or incorrect)

Control input or external information wrong or missing

Scenario:
1) Cyber Attack against screen causes it to go blank
2) Operator training says screen only goes blank under severe degradation
3) Operator assumes plant damage and issues Close MSIV

Digital Control System

Component failures
Changes over time

Inadequate or missing feedback

Screen

Inadequate operation

Scenario:
1) Cyber Attack against screen causes it to go blank
2) Operator training says screen only goes blank under severe degradation
3) Operator assumes plant damage and issues Close MSIV

Keyboard

Inadequate operation

CLOSE MSIV

CLOSE MSIV SIGNAL

Process input from Physical Valve Sensor

Process output contributes to Physical valve actuator

WYOUNG@MIT.EDU © Copyright William Young, 2014
Real World Work to Date

• Demonstrated ability to identify unknown vulnerabilities in a global mission
• Demonstrated ability to identify vulnerabilities in early system concept documents
• Demonstrated ability to improve ability of network defenders to identify and prioritize network assets based on mission assurance goals
 – Real mission, Real mission owner, Real network
 – Defenders able to more precisely identify what to defend & why (e.g. set of servers → integrity of a single file)
 – Defenders able to provide traceability allowing non-cyber experts to better understand mission impact of cyber disruptions
Conclusions

• STPA-Sec provides a way to frame the security challenge within a mission context

• STPA-Sec provides a method to actually begin addressing security ("high-level cyber vulnerabilities") at the concept stage

• Security applications appear noticeably behind safety applications…but seems to be following a similar trajectory
 – Initial tests are encouraging

• Potential for non-zero sum game between attackers and defenders

Full Details Will Be Included in My Dissertation this Summer
QUESTIONS ☼☼☼☼
STPA-SEC
for Cyber Security / Mission Assurance

25 March, 2014

William E. Young, Jr,
PhD Candidate, Engineering Systems Division
Systems Engineering Research Lab
Advisor: Prof N. Leveson

WYOUNG@MIT.EDU © Copyright William Young, 2014