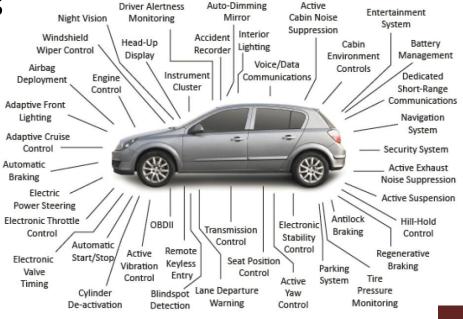
Analyzing Feature Interactions in Automobiles

John Thomas, Ph.D. Seth Placke 3.25.14


Outline

- Project Introduction & Background
- STPA Case Study
- New Strategy for Analyzing Interactions
- Contributions

Goal: Integrate multiple propulsion and braking control systems into one vehicle.

Problem: These control systems (features) may interact in unsafe and dysfunctional ways

- Large numbers of systems
- Emergent behavior:
 - Difficult to predict
 - Can lead to an accident

3

Project Introduction

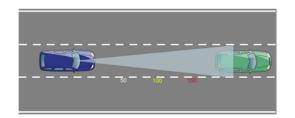
- Ideal System Engineering:
 - Top-down design from the start
- Common Challenges:
 - Upgrades to old systems
 - Adding features, etc...

Project:

- Use STPA to analyze interactions from new controllers
 - STPA to three example features
 - Identify hazards and dysfunctional interactions that arise during feature integration
 - Generalize analysis process for future use during concept development

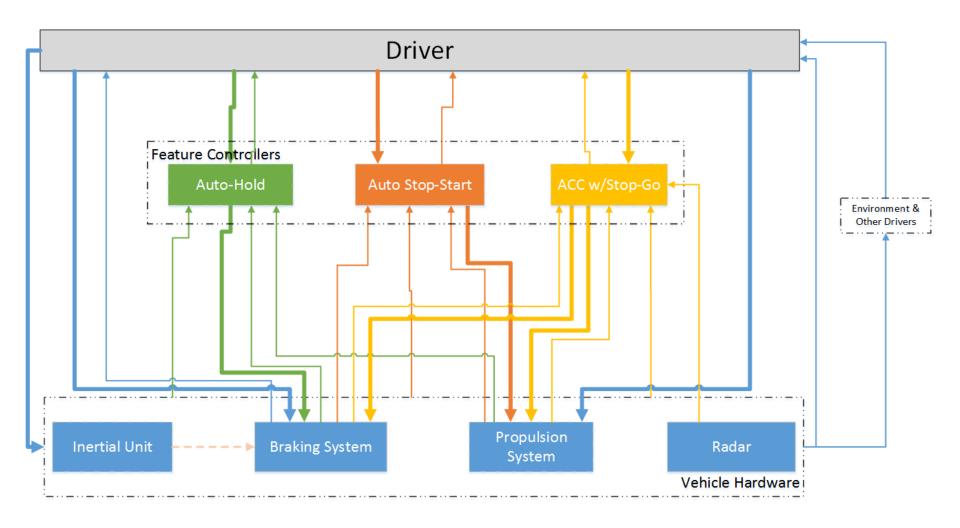
Project Scope

Auto-Hold: Automatic braking at stops


- Take (or release) control of the brakes
- Increase the brake pressure
- Apply the Parking Brake

Engine Stop-Start: Reduce idling at traffic stops

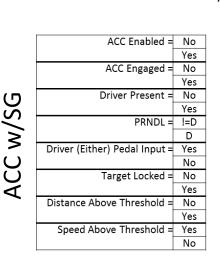
- Shutoff the Engine
- Restart the Engine
- Apply the Parking Brake


ACC w/Stop-Go: Adaptive Cruise Control at all speeds

- Accelerate
- Brake

All features Safety Critical!

System Control Structure


Control Common Processes & Receive Common Feedback

Individual Analysis Results

- Step 1 UCAs
 - ACC accelerates when too close to leading vehicle
 - ESS shuts-off engine when vehicle is rolling
 - AH holds brakes when vehicle is moving
 - etc...
- Step 2 Causal Factors
 - Brake valve fails
 - Shared bus error
 - ____ Delayed range feedback
 - etc...

	ACC Enabled	ACC Engaged	Driver Present	Etc	Providing Causes Hazard	Etc
d	No	*	*	•••	х	•••
Accelerate Command	Yes	No	*	•••	х	•••
Ac	Yes	Yes	No	•••	х	•••

Executable Requirements

Ad C	cce	lera	\boldsymbol{c}	B	ra ♪	
	Т	Т			Т	Т
	Т	Т			Т	Т
	Т	т			Т	т
	Т	т			т	т
	Т	Т			Т	Т
		T			T	T
	Т	Ť			T	
						T T
	Т]	,		

ke

Т

Т

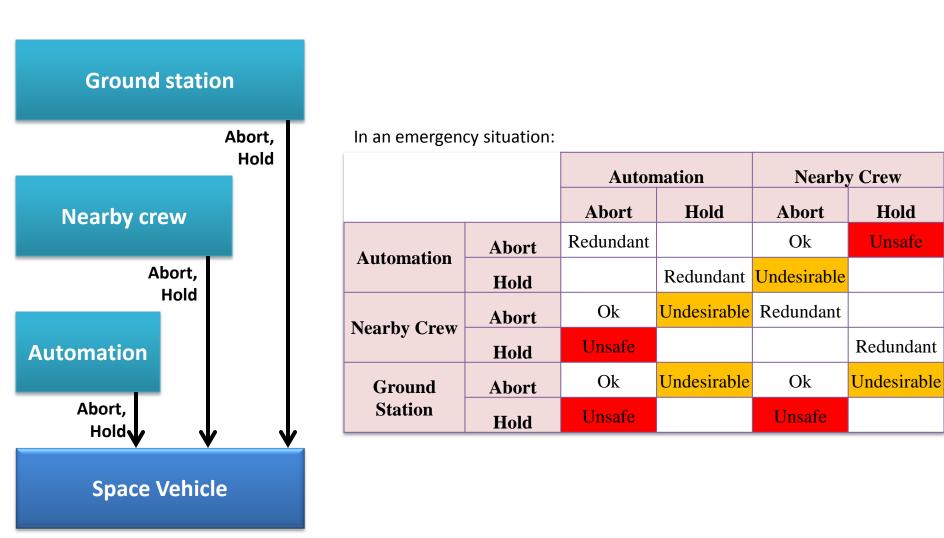
Т

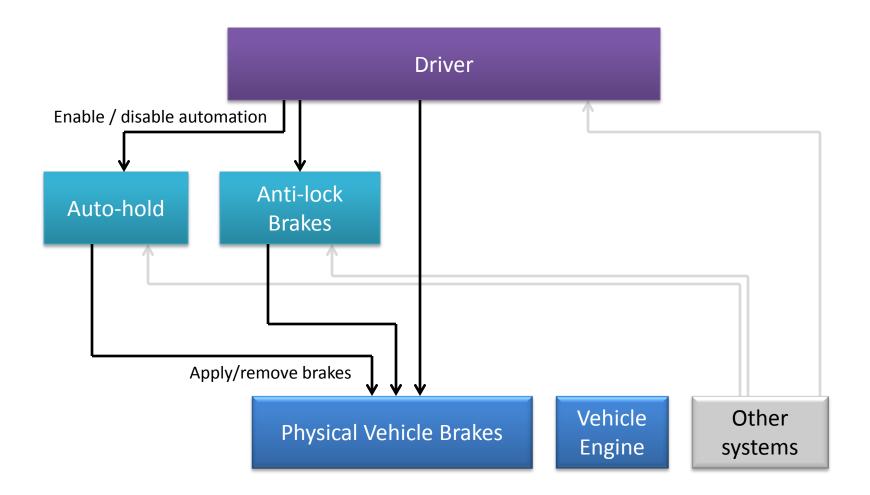
Т

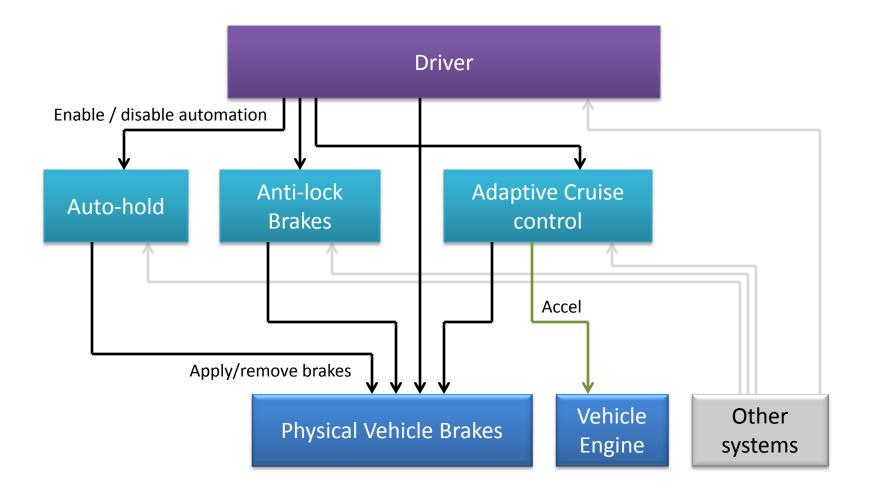
Т

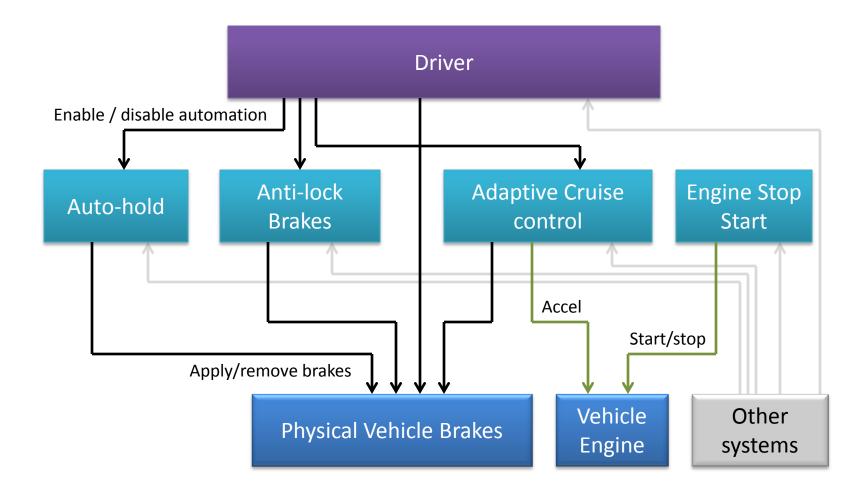
Т

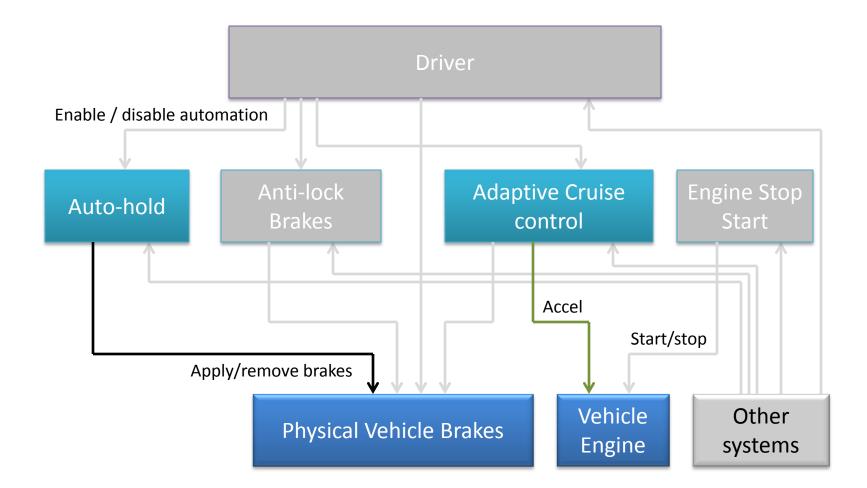
Т

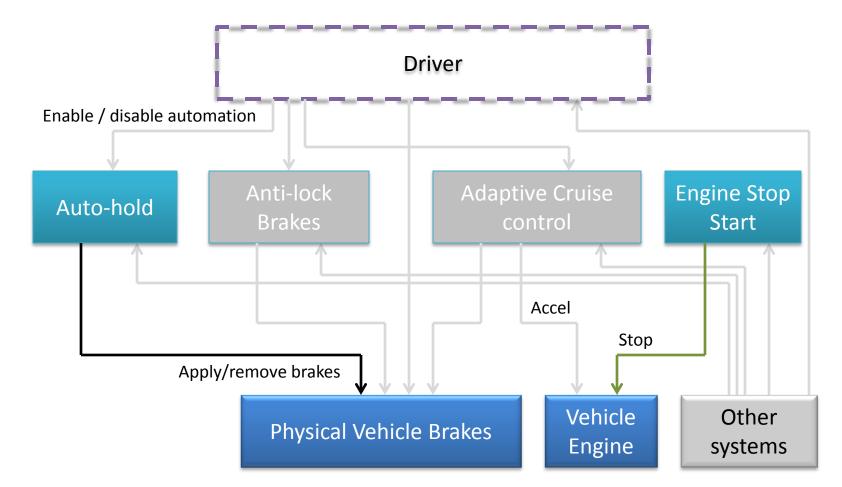

Individual Analysis Summary


- Analyzed the design of each controller, implemented individually
 - Systems were designed independently
 - In isolation each works relatively well
 - Design assumptions may be violated upon integration
- Need to thoroughly analyze the *interactions* between controllers:
 - How does Stop-Start stopping the engine affect Auto-Hold?
 - How do ACC w/SG and Auto-Hold manage the brakes simultaneously?
 - Do the features respond in concert during off nominal situations?
- Can the features issue conflicting commands?


• STPA already performed on individual designs


- System upgrades
 - New controllers, new functionality
 - May interact in hazardous new ways
- Need to start over from blank page?
- Can we leverage existing STPA results?


Multiple Controller Problem



Example interaction:

Auto-hold applies brakes ACC tries to accelerate

Example interaction:

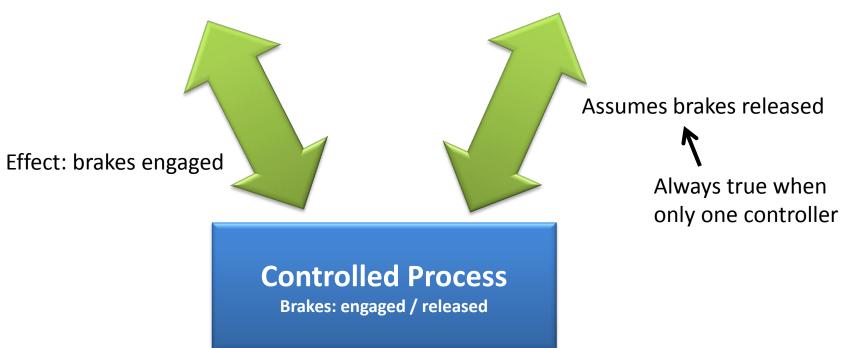
- Auto-hold applies brakes
- Engine-Stop-Start turns engine off
- Driver exits vehicle
- Driver may be going to look under hood (so be careful starting engine)

Brute force approach (incomplete)

			Auto-Hold			Stop	-Start	Driver			
			Α	В	С	D	E	D	E	F	G
			Hold	Release	АР	Engine start	Engine stop	Leave	Shift	Gas	Brake
	1	Hold									
Auto- Hold	2	Release									
	3	АР									
Stop-	4	Engine start									
Start	5	Engine stop			٦	lot a go for th	od appi is probl				
	6	Leave									
Driver	7	Shift									
	8	Gas									
	9	Brake									

Brute Force Limitations

- Doesn't scale well
 - Big-O Notation: (characterizes growth rates)
 - O(n²) analysis points for 2 control actions (2-D matrix)
 - O(n³) analysis points for 3 control actions (3-D matrix)
 - O(n^x) analysis points for X control actions
- Matrix includes all possible combinations
 - No way to merge rows/columns
 - No way to do abstraction


Understanding the Problem

Auto-hold:

• Applies brakes

Adaptive Cruise Control:

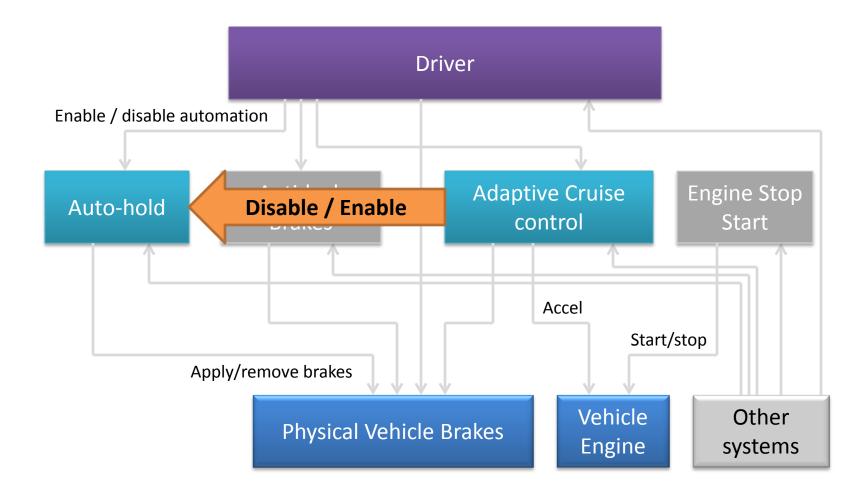
• Applies engine throttle

Control Actions and Conditions

	Auto-hold	Adaptive Cruise Control
Conditions assumed/required	Wheels not rotating	Brakes released
Control Action	Apply Brakes	Apply Engine Throttle
Conditions affected	Brakes engaged	Increased engine speed

Control Actions and Conditions

	Auto-hold	Adaptive Cruise Control
Conditions assumed/required	Wheels not rotating	Brakes released
Control Action	Apply Brakes	Apply Engine Throttle
Conditions affected	Brakes engaged	Increased engine speed


How could this combination hat - ACC stops on a hill following applies throttle to follow. AH c automatically increases brake

New constraint that didn't exist for any individual system!

, leading car accelerates and ACC rake force is insufficient, and

- Possible solution: Update design so AH is disabled when ACC active

Updated Control Structure

Possible Solution

	Contro	oller 1	Controller 2	Controller 3		
	Command A	Command B	Command C	Command D	Command E	
Design Assumptions & Required Conditions						
Effect on the System						

- A "conditions table" can record all the information needed to identify multiple-controller conflicts.
 - Grows with O(2n) scalable!

New Approach

Stop-Start	Engine restart	Engine stop	Etc.
Conditions Assumed / Required	Vehicle Held: Yes (i.e. Brakes: On Range: Park EPB: Yes) Wheels Rotating: No Restart Possible: Yes (i.e. Battery Charge: High) Driver Present: Yes Range:!=P,R,N	SS Enabled: Yes AUTO-STOPPED: Yes Vehicle Held: Yes (i.e. Brake: On EPB: Yes) Restart Possible: Yes (i.e. Battery Charge: High) Driver Present: Yes Gas Pedal: No Auxiliary Power Needs: Low Range: !=P,R,N	
Conditions Affected	Propulsion: On Idle Torque: Yes Electrical Power: On - power reduced ~2s AUTO-STOPPED: No	Propulsion: Off Idle Torque: No Electrical Power: Off AUTO-STOPPED: Yes	

New Approach

	АН				ESS		ACC w/SG		Driver				
	Hold	Release	АР	Apply EPB	Engine start	Engine stop	Apply EPB	Accel.	Decel.	Leave	Shift	Gas	Brake
Design assumptions / Required Conditions													
System states / conditions changed													

O(2n) – This is scalable!

New Approach

	АН			ESS		ACC	w/SG	Driver		
	Hold	Release	AP	Engine start	Engine stop	Accel	Decel	Accel	Brake	
Design assumptions / Conditions required to be effective	Car stopped; Battery power available; Little or no propulsion torque; Ability assume brake control	Driver present (to prevent rollback)	Battery power available; Little or no propulsion torque; AH controls brakes (AH in hold mode)	Battery power available; Engine off	Vehicle stopped	Propulsion ready (engine running, in gear); Brakes not applied	Battery power available; Ability to assume brake control; Little or no propulsion torque	roadvionging	Power available (power brakes); Little or no propulsion torque; Brake pedal connected	
System states / conditions changed	AH controls brakes; Brakes applied; Brake pedal disconnected	AH releases brake control (brake pedal connected)	AH braking force increased	Propulsion ready after 2s (engine running, idle propulsion torque), electric power significantly reduced for 2s, power available after 2s (battery charging, power brakes, etc)	off, no propulsion	Increased propulsion torque	ACC controls brakes; Brakes applied; Brake pedal disconnected	Increased propulsion torque	Driver controls brakes; Brakes applied	

Results 1

Driver Order Here Head Force Design for the set of the set of

Problems/Conflicts:

Control actions:

- ACC does not have the authority to dis-engage the EPB
- Auto-Hold attempting to secure the vehicle while it's held by ACC

Potential Solutions :

- R-1: ACC may disengage EPB
- R-2: ACC may monitor the state of the EPB
- R-3: EPB may monitor the state of ACC

Auto-Hold applies the parking brake

ACC attempts to accelerate

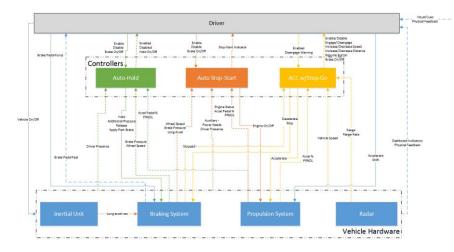
- R-4: Issuing the EPB turns the features 'off'
- R-5: Auto-Hold could be disabled when ACC is active (ACC can hold car at stop)

Results 2

Context:

- AH is holding brakes
- Battery charge is low (but sufficient for restart)
- ESS turns engine off to save fuel
- Reduced torque causes vehicle to move i.e. downhill

Controller Response:


- AH attempts to increase brake pressure
- Stop-Start attempts to start vehicle

Problem:

• Battery voltage drops, vehicle starts but cannot increase brake pressure for 2s

Potential Solutions / Requirements:


- R-1: AH pump must operate at a low battery voltage
- R-2: ESS must warn AH so pressure can be increased before engine turns off
- R-3: Battery threshold must be sufficient to guarantee simultaneous restart and brake pump

Results 3

Context:

- Auto-Hold is holding vehicle
- ESS stops engine to save fuel
- Driver shifts to reverse
- Driver steps on gas to back up

Problem:

- ESS cannot *Start* the engine (prevented by FMVSS 102)
- AH cannot *Release* (insufficient engine torque)

Potential Solutions / Requirements?

Summary

- Provides a way to analyze interactive effects

 Can be automated
- Scalable to very complex systems, more than 2 control actions
- Can identify missing feedback / control in the design
- Leverages existing STPA analysis, requirements for independent systems
- Provides a way to identify new Process Model Variables