ARP 4761 and STPA

(using the Wheel Brake Example in ARP 4761)

Cody Fleming

March 27, 2014

Goals of this Talk

- 1. How does regulation work in aviation?
 - ARP 4761, others
- 2. What are the objectives of 4761?
 - What methods, outputs, processes does it require?
- 3. Can STPA satisfy the 4761 objectives?
- 4. What is necessary for #3 to happen?
 - Do we have to re-write 4761, do we have to modify STPA, are they already compatible?

Agenda

- ARP4761 Process
- ARP4761 Application
- STPA Results
- 4761 and STPA
- Future

ARP 4761

• What is ARP 4761???

• "Describes guidelines and methods of performing safety assessment for certification of civil aircraft" [SAE 1996]

Development & Certification Process

Safety Assessment Elements

• Functions, Design Constraints, Reqs, ...

- Functional Hazard Assessment
- Identify failure, error conditions according to severity
- Aircraft level & System level

PSSA

- Preliminary System Safety Assessment
- Complete failure conditions list
- Generate safety requirements

- System Safety Assessment
- Comprehensive analysis of implementation

Development Assurance Levels

	Per flight Hour				
Probability (Quantitative)	1.0	1.0E-3	1.0E-5	1.0E-7	1.0E-9
Probability (Descriptive)	Frequent	Reasonably Probable	Remote	Extremely Remote	Extremely Improbable
Failure Condition	Minor		Major	Sever Major	Catastrophic
Severity Classification	Minor		Major	Hazardous	Catastrophic
Failure Cond. Effect	 slight reduction in safety margins slight increase in crew workload some inconvenience to occupants 		- significant reduction in safety margins or functional capabilities	- large reduction in safety margins or functional capabilities	- all failure conditions which prevent continued safe flight
Development Assurance Level	Level D		Level C	Level B	Level A

4761 Basics

PRA

- Some requirements leveled in terms of probabilities
- Not all requirements are leveled in terms of Pe
 - E.g. software assumed as Pe=0
 - Level A failures cannot be argued probabilistically

Methods

- FTA, FMEA
- Zonal, CCA, DD, MA

Agenda

- ARP4761 Process
- ARP4761 Application
- STPA Results
- 4761 and STPA
- Future

4761 – Wheel Brake System

Aircraft FHA

1 Function	2 Failure Condition (Haz Description)	3 Phase	4 Effect of Failure Condition on Aircraft/Crew	5 Classificat'n	V&V
	Loss of Deceleration		See Below		
the Ground	a. Unannuciated loss of deceleration capability	Landing/ RTO	Crew is unable to decelerate the aircraft resulting In a high speed overrun	Catastrophic	Aircraft Fault Tree
	b. Annunciated loss of deceleration capability	Landing	Crew selects a more suitable airport, notifies emergency ground support and prepares occupants for landing overrun.	Hazardous	Aircraft Fault Tree
	c. Unannunciated loss of deceleration capability	Taxi	Crew is unable to stop the aircraft on the taxi way or gate resulting In low speed contact with terminal, aircraft, or vehicles	Major	
	d. Annunciated loss of deceleration	Taxi	Crew steers the aircraft clear of any obstacles and calls for a tug or portable stairs	No Safety Effect	
	Inadvertent Deceleration after VI (Takeoff/RTO decision speed)	Takeoff	Crew is unable to takeoff due to application of brakes at the same time as high thrust settings resulting in a high speed overrun	Catastrophic	Aircraft Fault Tree

Aircraft FHA

1 Function	2 Failure Condition	3	4 Effect of Failure	5
	(Haz Description)	Phase	Condition on Aircraft/Crew	Classificat'n
Aircraft on		Taxi	Crew steers the aircraft clear of any obstacles and calls for a tug or portable stairs	No Safety Effect

PSSA

Continuation of FHA on "systems"

• Refined requirements, refined failure assessments, ...

PSSA

Derived Safety Requirements

Safety Requirement	Design Decisions	Remarks	
1. Loss of all wheel braking	More than one hydraulic	The overall wheel brake	
(unannunciated or	system required to achieve	system availability can	
annunciated) during landing	the objective (service	reasonably satisfy this	
or RTO shall be less than	experience). Dual channel	requirement. See PSSA FTA	
5E-7 per flight.	BSCU and multimode brake	below.	
	operations.		
2. Asymmetrical loss of	Separate the rudder and	The wheel braking system	
wheel braking coupled with	nose wheel steering system	will be shown to be	
loss of rudder or nose wheel	from the wheel braking	sufficiently independent	
steering during landing	system. Balance hydraulic	from the rudder and nose	
shall be less than 5E-7 per	supply to each side of the	wheel steering systems.	
flight.	wheel braking system.	System separation between	
		these systems will be shown	
		in the zonal safety analysis	
		and particular risk analysis	

Derived Safety Requirements

Safety Requirement	Design Decisions	Remarks
1. The primary and	Install hydraulic supply to	Compliance will be shown
secondary system shall be	the brakes in front and	by ZSA and PRA. (Editor's
designed to preclude any	behind the main gear leg.	Note: In this example only
common threats (tire burst,		for the main gear bay zone
tire shred, flailing tread,		and the tire burst
structural deflection).		particular risk.).
2. The primary and	Choose two different	Compliance will be shown
secondary system shall be	hydraulic systems to	by CMA.
designed to preclude any	supply the brakes,	
common mode failures	emergency braking without	
(hydraulic system,	electrical power.	
electrical system,		
maintenance, servicing,		
operations, design,		
manufacturing, etc.).		

SSA

Continuation from PSSA

Based on final designs and implementations

Computer-related FTA

Safety Assessment Elements

1.0E-9

Level A

- Flow into DO-178 (software) and DO-254 (hardware)
- Those documents provide guidance in how to achieve the different levels (a discussion for another time)

Agenda

- Motivation
- ARP4761 Process
- ARP4761 Application
- STPA Results
- 4761 and STPA
- Future

Control Structure

Unsafe Control Actions

Control Action	Not providing	Providing causes	Too soon, too late,	Stopped too soon,
Flight Crew:	causes hazard	hazard	out of sequence	applied too long
CREW.1	CREW.1a1	CREW.1b1	CREW.1c1	CREW.1d1
Manual braking via brake pedals	RTO while autobrake	•	Manual braking applied before touchdown causes wheel lockup, loss of	
		_	control, tire burst	resulting in over- speed or overshoot
		CREW.1b2 Manual braking provided with excessive pedal pressure, resulting in loss of control, passenger/crew injury, brake overheating, brake fade or tire burst during landing	CREW.1c1 Manual braking applied too late to avoid collision or conflict with another object	CREW.1d2 Manual braking applied too long, resulting in stopped aircraft on runway or active taxiway

Unsafe Control Actions

Control Action	Not providing	Providing causes	Too soon, too late,	Stopped too soon,
BSCU:	causes hazard	hazard	out of sequence	applied too long
BSCU.1	BSCU.1a1	BSCU.1b1	BSCU.1c1	BSCU.1d1
Command	Braking pressure	Braking pressure	Braking pressure	Reduced
	not provided during	commanded	applied before	deceleration if
Braking	RTO (to V1),	excessively,	touchdown,	brake pressure is
Pressure	resulting in inability	resulting in rapid	resulting in tire	released during
	to stop within	deceleration and	burst, loss of	landing roll before
	available runway	injury in pushback	control, injury,	TBD taxi speed
	length		other damage	attained
	BSCU.1a2	BSCU.1b2	BSCU.1c2	BSCU.1d2
	Brake pressure not	Braking pressure	Braking pressure	Stop on runway if
	provided during	applied	applied too long	brake pressure not
	landing roll,	inappropriately	after touchdown,	released during
	resulting in	during takeoff,	resulting in	landing roll after
	insufficient	resulting in	insufficient	TBD taxi speed
	deceleration and	inadequate	deceleration and	attained
	potential overshoot	acceleration	potential loss of	
			control, overshoot	

BSCU (Brake Comp.) Analysis

BSCU (Brake Comp.) Analysis

Flawed Control
Algorithm:

Unsafe Control Action: BSCU.1b2

Braking pressure applied inappropriately during takeoff, resulting in inadequate acceleration

<u>Incomplete or inaccurate process model:</u>

- BSCU is unaware that aircraft is in takeoff phase (but may still have correct WOW and air/groundspeed readings and thus applies brakes)
 - Proc Model Variables: Flight Mode
- BSCU is unaware that aircraft has passed
 V₁ speed
 - Proc Model Variables: Groundspeed
- BSCU incorrectly assesses that aircraft has left ground
 - Proc Model Variables: Altitude, WOW

speed incorrect or misread ound/airspeed incorrect or misread ght mode incorrect or misread

Iismatch in data format; Iismatch in units (Eng v Iet) ensor readings are too ow (BSCU computes at 00Hz but sensor pdates at 1Hz)

d WOW Sensors

measurement error ncorrect or misread g. due to winds) stent weight-onnts lose calibration weather

ressure not detected

mechanism cannot overcome latent hydraulic pressure

Crew Analysis

[Thornberry 2014] 26

Agenda

- ARP4761 Process
- ARP4761 Application
- STPA Results
- 4761 and STPA
- Future

A Note on "Annunciation"

• Air France 447 had plenty of annunciations prior to crash

[Telegraph/Getty Images 2012]

STPA and 4761 FMEA

- Where is the pilot in 4761?
 - The only relevant thing to pilot is "unannunciated",
 - What about when and why it is annunciated,
 - Assumes that pilot will be able to account for and react to brake failures

- Why?
 - It is not just because FTAs and other methods

STPA and 4761

- What about software?
 - Software often "ends" with a failure node in a FTA

- There are other tools in the suite of tools allowed by 4761 that we need to assess

Software development is (somewhat) out-of-scope for
 4761

– But STPA can help here!!!

STPA and 4761

• Can STPA find the things about hardware that are already in existing techniques?

- How does it compare with FMEA & FTA?

– Does it find things beyond what they find?

– Does STPA help to achieve 4761 objectives?

Agenda

- ARP4761 Process
- ARP4761 Application
- STPA Results
- 4761 and STPA
- Future

Next Few Months

- STPA Analysis is ongoing
 - Fidelity of STPA analysis ≈ fidelity of ARP analyses, examples

- More thorough analysis
 - of how STPA compares to existing techniques
 - of how STPA fits into (or doesn't) ARP4761

Longer Term

• Can we get STPA into ARP4761?

• What will ARP4761<u>A</u> look like?

• Does STPA help to achieve 4761 (and 4754A) objectives?

Does the FAA want this?

References

- 1. NTSB Case Number: DCA13IA037, Interim Factual Report Boeing 787-8, JA829J, Japan Airlines (Boston, Massachusetts, January 7, 2013), National Transportation Safety Board, Office of Aviation Safety, March 7, 2013
- 2. Boeing 787 Program Information "About the Dreamliner" (accessed 20 March 2014) http://www.boeing.com/boeing/commercial/787family/background.pag e?
- 3. Boeing 787 Wikipedia page (accessed 20 March 2014) http://en.wikipedia.org/wiki/Boeing_787_Dreamliner
- 4. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment. Warrensdale: SAE International, 1996. Print.
- 5. 787 picture
- 6. The Unwanted Blog, http://up-ship.com/blog/?p=6045, May 01, 2010
- 7. Ross & Tweedie, The Telegraph, UK http://www.telegraph.co.uk/technology/9231855/Air-France-Flight-447-Damn-it-were-going-to-crash.html, April 28, 2012, Getty Images

BSCU (Brake Comp.) Analysis

BSCU (Brake Comp.) Analysis

Actuator: Meter valves

Signal to release brakes mis-read/not received

Meter valve stuck open upon initiation of takeoff

Controller: RSCII

Meter valve incompletely closed

* Meter valve position incorrectly read

Hydrauli Weight o Aircraft presulting wheels m

Sensors of

Sensors 6

Sensor: C

Meter valve incompletely closed Sensors degrade or lose calibration **Controlled Process:** Brake Caliper Sensors effected by weather Corroded brake piston causes caliper to stay engaged; Contaminated brake fluid causes Caliper pressure given Caliper pressure not detected caliper to remain engaged, even Hydraulic pressure higher after valves are correctly closed; than valve capability Fluid not released, or spring mechanism cannot overcome latent hydraulic pressure

• Functions = intended behavior of a product based on a defined set of requirements regardless of implementation

• Failures = loss of function or a malfunction of a system or a part thereof (different than 4754)

• Errors = (1) an occurrence arising as a result of an incorrect action or decision by personnel operating or maintaining a system, (2) a mistake in specification, design, or implementation

• Hazards = potentially unsafe condition resulting from failures, malfunctions, external events, errors, or a combination thereof

 These definitions present some hurdles in terms of communication

• But STPA can help with ARP4761...especially with identifying 'errors', why they might occur, how to generate requirements

4761 Objectives

FHA Outputs

- FHA input function list
- Environmental and Emergency Configuration List
- Derived safety requirements for the design at each level
- FHA Report
 - Functions, failure conditions, phase of ops, ...

4761 Objectives

PSSA Outputs

- Planned compliance with FHA requirements
- Updated FHAs
- Material supporting classification list
- Failure condition list
- Lower level safety requirements (including DALs)
- Qualitative FTAs
- Preliminary CCAs
- Operational requirements

4761 Objectives

SSA Outputs

- Updated failure condition list or FHA which includes rationale showing compliance with safety requirements (qual and quant)
- Documentation showing how req's for the design of the system items' installation have been incorporated (segregation, protection, etc.)
- Materials used to validate the failure condition classification
- Maintenance tasks
- Documentation showing how system has been developed according to DAL

Background

Aircraft are VERY safe

Development & Certification process has been very successful

• This is due at least in part to ARP4761

• Accidents due to mechanical failure have decreased dramatically over the years...

Background

• Why has approach been so successful?

• Will the assumptions hold in the future?

Past, Present, and Future

• What do we see in the aircraft of 'yesterday'?

• What do we see in the aircraft of 'today'?

• What will we see in the aircraft of 'tomorrow'?

Past

[UWB, 2010]

Present

[Bicheno-Brown, 2012]

Present

Fuselage – CFRP composite HUD

Electric power (vs bleedless and hydraulic)
LiCo batteries
IMA, AFDX (ethernet comm)
Self monitoring & Reporting
Increasing global manufacturing

[Bicheno-Brown, 2012]

Future

A Note on PRA

- Boeing 787 LiCo Batteries
- Prediction/Certification:
 - No fires within 10⁷ flight hours
 - Followed 4761 certification paradigm
- Actual experience:
 - − Within 52,000 flight hours − 2 such events
 - -2.6×10^4 flight hours [NTSB 2013]

A Note on PRA

• I love the 787 and I continue to cheer it on!

- LiCo technology a fairly significant departure from yesteryear's battery technology
 - More energy density, requiring more complexity to control it

• This is a battery – what will happen if/when we drastically change the role of software & humans?