

Chaire d'enseignement de recherche

Captage, t Transport et Stockage du CO,

Contribution of STAMP to the Risk Management of CO₂ Capture, Transport and Storage Projects

Prepared & presented by: Jaleh SAMADI MINES ParisTech, CRC

March 28, 2013

Contents

- 1. Research Question
- 2. Context
 - CTSC, Climate Change, Risks & Risk Management
- 3. Proposed Methodology & Application
- 4. Conclusions

2/25

Chaire d'enseignement et de recherche

Captage, Transport et Stockage du CO₂

Research Question

Is the safety control structure of CTSC projects effective enough? In which context and why some CTSC projects are more successful than others?

A systemic approach is proposed for Risk Management of CTSC projects.

Research
 Question

Context

 Proposed methodology

Application

Conclusions

1

2

3

4

Jalch SAMADI, March 28, 2013

3 / 25

Chaire d'enseignement et de recherche

CTSC & Climate Change (1/2)

4 / 25

MINES

Jaleh SAMAD?, March 28, 2013

Chaire d'enseignement et de recherche

SC

Captage, nt Transport et e Stockage du CO₂

CTSC & Climate Change (2/2)

Jaleh SAMADI, March 28, 2013

5 / 25

Chaire d'enseignement et de recherche

CTSC Technology

6 / 25

CTS**C**

1

2

3

4

&

Jaleh SamaDI, March 28, 2013

Chaire d'enseignement et de recherche

CTSC Projects Current Status

[GCCSI, 2012]

Most (10/16) of the operational projects: EOR

1

2

3

4

Jaleh SamaDI, March 28, 2013

7 / 25

Chaire d'enseignement et de recherche

CTSC & Risks (1/2)

• CO₂ Capture Risks:

• Vent gas

• Liquid & solid wastes

- o Impurities such as H₂S, SO_x, NO_x, N₂, O₂, H₂O => Corrosion
- \circ CO₂ Transport Risks, depends on: \circ
 - *o* Transportation mode
 - Local topography
 - Meteorological conditions
 - Population density

- Most significant issues:
 - 0 Leakage
 - Corrosion (Impurities)

• CO₂ Storage Risks:

- Local risks, e.g. human beings, animals & plants, and potable water sources
- Global risks: CO₂ atmospheric release

Jaleh SAMADI, March 28, 2013

8 / 25

Captage, nt Transport et e Stockage du CO₂

CTSC & Risks (2/2)

• Eight major risk categories are identified.

Long term reliability of the technology

Acceptability of CTSC projects

Jaleh SAMADI, March 28, 2013

9 / 25

Chaire d'enseignement et de recherche

Captage, t Transport et Stockage du CO₂

Requirement of a novel systemic approach

CTSC is a complex sociotechnical system

Complex System:

"composed of many parts that interact with and adapt each other."

"the behavior cannot be adequately understood by only studying their component parts, because the behavior arises through the interactions among those parts."

[IRGC, 2010]

A systemic approach is necessary to identify & analyze the risks affecting CTSC projects and their interconnections.

 Research Question

Context

Proposed

methodology

Application

Conclusions

1

2

3

4

Jaleh SamaDI, March 28, 2013

10 / 25

Chaire d'enseignement et de recherche

Captage, Transport et Stockage du CO₂

Proposed Methodology, Outline

- Identifying major risks associated to CTSC (according to literature review, projects documentation and discussion with experts)
- Assigning the risks to different CTSC subsystems and project phases
- Defining the nature of risks and their consequences
- Extracting the risks related to the very first phases of the project
- Modeling the major risks using a systemic approach
- Applying the systemic approach to model the safety control structure of different case studies

Research

Question

Context

 Proposed methodology

Application

Conclusions

1

2

3

4

Jaleh SAMADI, March 28, 2013

3

Δ

5

6

11 / 25

Captage, nt Transport et e Stockage du CO₂

1: Identifying major risks

• Identifying major risks associated to CTSC (according to literature review, projects documentation and discussion with experts)

	Overview of risks affecting CTSC project progress						
1	Project permits not obtained	21	BLEVE				
2	Technology scale-up	22	Lack of financial resources				
3	Public Opposition	23	Lack of political support				
4	Lack of knowledge/qualified resources for operating the unit	24	Phase change & material problems				
5	Corrosion	25	High cost of project				
6	Using the existing facilities (specially pipelines)	26	Lower Capture efficiency due to the upstream plant flexible operation				
7	CO ₂ out of specification	27	CO ₂ leakage from compression unit				
8	CO ₂ plumes exceed the safe zone	28	Pipeline construction				
9	Legal uncertainties	29	CO ₂ leakage from pipeline				
10	Safety related accident	30	Unavailability of regulations regarding different types of storage (offshore/onshore)				
11	Uncertainties in stakeholders requirements/perceptions - Communication problems	31	Leakage through manmade pathways such as abandoned wells				
12	Public availability of sensitive information	32	Well integrity				
13	Change in policies/priorities	33	CO ₂ migration				
14	Financial crisis impact on financial support of CCS projects	34	Injectivity reduction over time				
15	Unavailability of a monetary mechanism for CO ₂	35	Uncertainties regarding the storage performance (capacity/injectivity/containment)				
16	Construction field conditions	36	CO ₂ leakage from storage to the surface				
17	Geographical infrastructure	37	Model and data issues				
18	Proximity to other industrial plants	38	Uncertainties related to storage monitoring				
19	Energy consumption	39	Soil contamination				
20	Maintenance and control procedures (including ESD system)						

A list of 39 risks

MINES

Research

Question

Context

 Proposed methodology

Application

Conclusions

1

2

3

4

Jaleh SamaDI. March 28, 2013

ala hinti

12 / 25

TS

Chaire d'enseignement et de recherche Captage,

Transport et

2: Risks, CTSC subsystems & project phases

• Assigning the risks to different CTSC subsystems and project phases

Research

Question

Context

 Proposed methodology

Application

Conclusions

1

2

3

4

2

Jaleh SamaD?, March 28, 2013

13 / 25

Chaire d'enseignement et de recherche

3: Nature of Risks & Consequences

• Defining the nature of risks and their consequences

RISK	SUBSYSTEM	RISK NATURE	NATURE OF CONSEQUENCES
	С	т	Т
	Т	Р	P A
Example:	S	S	S
	N N	P/S	P/S S
Project permits		HSE	HSE
not obtained			L
		O/H	O/H
		F/E	F/E

T=Technical, P=Project, S=Social, P/S=Policy/Strategy, HSE=Health, Safety, Environment, L=Legal, O/H=Organizational/Human, F/E=Financial/Economic

Research

Question

Context

 Proposed methodology

Application

Conclusions

3

1

2

3

4

Jaleh SamaDI, March 28, 2013

14 / 25

Chaire d'enseignement et de recherche

Captage, t Transport et Stockage du CO₂

4: Extracting the Risks of 1st phases

• Extracting the risks related to the very first phases of the project

Project permits not obtained 10 Unavailability of a monetary mechanism for CO₂ 1 Technology scale-up Geographical infrastructure 2 11 Lack of financial resources **Public Opposition** 3 12 Lack of knowledge/qualified resources for 4 13 Lack of political support operating the unit Legal uncertainties High cost of project 5 14 Uncertainties in stakeholders Unavailability of regulations regarding different 15 requirements/perceptions - Communication 6 types of storage (offshore/onshore) problems Uncertainties regarding the storage performance 7 Public availability of sensitive information 16 (capacity/injectivity/containment) Change in policies/priorities Model and data issues 8 17 Financial crisis impact on financial support of 9 18 Uncertainties related to storage monitoring CCS projects

15 / 25

Research

Question

Context

• Proposed

methodology

Application

Conclusions

1

2

3

4

 Δ

Transport et

5: Modeling the major risks/safety control structure

Jaleh SamaDI, March 28, 2013

16 / 25

Transport et

Example: Risk of Public Opposition (1/2)

Risk: Public opposition

Safety Constraints:

- Local population agreement should be assured.
- In case of opposition, measures should be in place to reduce the risk of project delay or cancellation.

Who is responsible for maintaining the safety constraint?

Project owner

Required Control Actions:

- Direct communication with the community from the initial phases of the project
- Giving information to the public in a less complicated manner (not too technical)
- Making the public trust them by highlighting the mutual benefits from the project development (including CTSC role in Climate Change mitigation)
- Making the public trust them by sharing the uncertainties and risks

(Examples of) Inadequate Control Actions leading to a hazardous state:

- Direct communication with the stakeholders is not provided.
- Communication with the stakeholders is performed indirectly (via media or third parties, for example).
- Direct communication with the stakeholders is provided too late.
- Project developers do not continue to directly communicate with the stakeholders during the life cycle of the project.

Jaleh SAMADI, March 28, 2013

17 / 25

Captage, nt Transport et ne Stockage du CO₂

4

2

3

Research

Question

Context

• Proposed

methodology

Application

Conclusions

Example: Risk of Public Opposition (2/2)

Jaleh SamaD?, March 28, 2013

18 / 25

Chaire d'enseignement et de recherche

Example of a regrouped model

Jaleh SAMAD?, March 28, 2013

19/25

Chaire d'enseignement et de recherche

6: Application for Case Studies

• Applying the systemic approach to model the safety control structure of different case studies

	Barendrecht	Lacq	Weyburn
Current Status	Cancelled (in detailed organization phase)	In operation	In operation
Scale	Demonstration	Pilot	LSIP
CO ₂ storage rate	400,000 tonnes/year	60,000 tonnes/year	3 Mtpa
Storage type	Depleted gas field	Depleted gas field	EOR
Country	The Netherlands	France	The United States
Major issues	Public opposition	Technical challenges	 Public acceptance challenges EOR as a long term storage option!
Main objective	Set down a foundation for CTSC LSIP in the Netherlands	Verify the feasibility of a CO ₂ storage plant in France	Oil production increase
Concerning Industry	Oil & Gas	Oil & Gas	Oil & Gas

Research

Question

Context

 Proposed methodology

Application

Conclusions

&

1

2

3

4

6

Jaleh SAMADI, March 28, 2013

20 / 25

Captage, nt Transport et e Stockage du CO₂

Example: Barendrecht, Initial Model

MINES ParisTech

21/25

d'enseignement

et de recherche

Transport et

Example: Barendrecht, Improved Model

Proposed Safety Control Structure

MINES

ParisTech

CTSC 🥏

Chaire d'enseignement et de recherche

Captage, Transport et Stockage du CO₂

Conclusions, Advantages of the Methodology

Overview:

- A novel methodology to model & analyze the risks & safety control structures
- Providing a means of decision making for CTSC projects development

Advantages:

- Presenting more comprehensive list and categories of risks
- Taking into account the complex network of risk interconnections by proposing a systemic modeling framework
- Underlining the significance of stakeholders role in the project success or failure

 Research Question

Context

 Proposed methodology

Application

Conclusions

1

2

3

4

Jaleh SAMAD?, March 28, 2013

24 / 25

Chaire d'enseignement et de recherche

Transport et

Many thanks for your attention

jaleh.samadi.rad@gmail.com

Jaleh SAMAD?, March 28, 2013

25 / 25

Chaire d'enseignement et de recherche