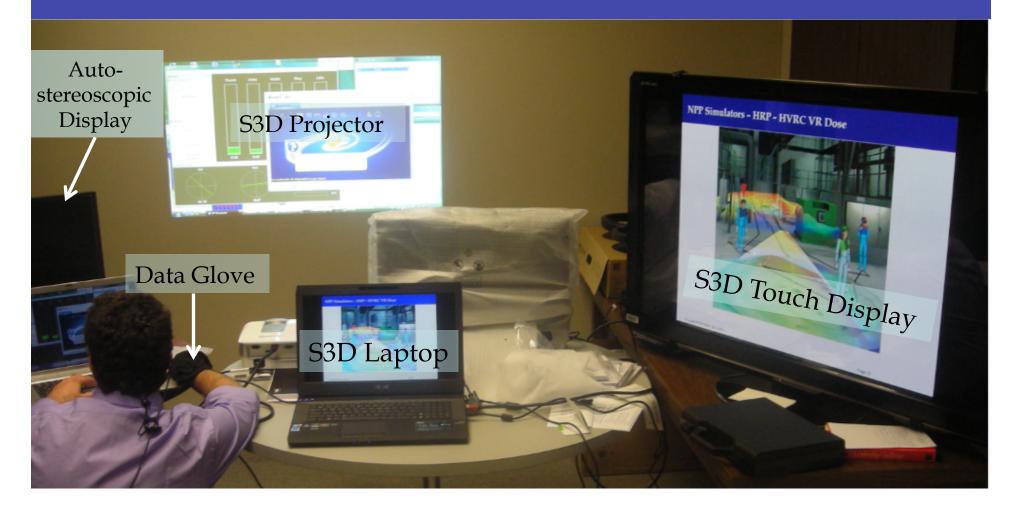
Using STPA in the Design of a Nuclear Power Plant Control Room

A. Lucas STEPHANE

MS Business Intelligence MS Experimental Psychology

Research Assistant Florida Institute of Technology

> April 19, 2012 MIT

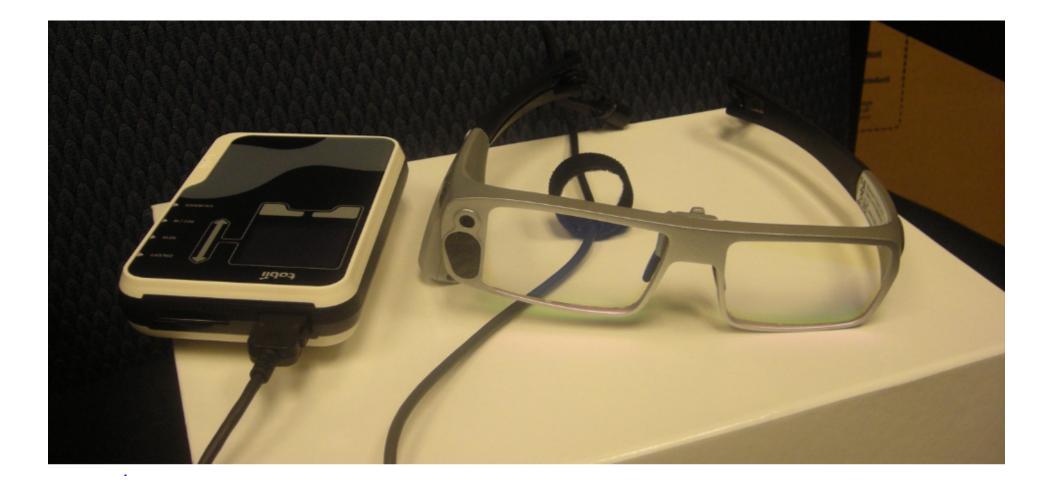

Research Context (ongoing PhD) – digitalization of NPP MCR...

- Sponsor: AREVA R&D Human Factors Department
- *Mission*: Force of Proposals
 - *Early exploration of relevant emergent technologies*
- *Vision*: sociotechnical Human Centric *Convergence*
 - Inter-domain (Aeronautics → Nuclear, ...)
 - Interdisciplinary (Psycho, Eco, Socio, Techno, Organizational)
- *Research Focus*: Design & Evaluation of **Instruments & Controls (I&C)**
 - 3 main layers of intertwined requirements
 - Presentation
 - Content
 - Joint Activity (co-activity, interaction)
- *Target System*: **Safety Instruments & Controls System** (*SICS*)
- *Target location*: Nuclear Power Plant Main Control Room (*NPP MCR*)
- Target population: Knowledge Workers

Research Phase I

- *Phase I -* 2010: Exploration & Identification of
 - Technology
 - Stereoscopic 3D (S3D): compact & natural presentation/visualization
 - 3D Gaming Engines: *full* interactivity (vs. animation)
 - Touch surfaces (fixed & mobile): joint activity/interaction
 - personal Drone *in operations*: accessing dangerous locations
 - Content
 - plant subsystems (i.e. *partial* approach, *single unit*)
 - *Incident* scenarios
 - Sociotechnical modeling
 - Belief Desire Intention Multi-Agent Systems
 - *External Viewpoint*: Roles, Responsibilities, Resources, Services
 - Internal Viewpoint: Beliefs, Desires, Intentions
 - Service Oriented Architecture *Reference Architecture*
 - *techno mediation + management for Social Structures*
 - Usability Design & Evaluation methods
 - Situation Awareness (rational <u>external</u> aspects)
 - <u>Self</u> Awareness (motivation, emotions, loss-aversion, cognitive dissonance)
 - Workload
 - Eye Tracking

Phase I: Lab Configuration...


Phase I: Lab Configuration...Touch surfaces: Tablet (*Remote Desktop*) & Touch Screen

Phase I: Lab Configuration...Personal Drone – Fly using tablet

Phase I: Lab Configuration...Eye Tracking

© Lucas STEPHANE, 04/19/2012 STAMP/STPA Workshop, MIT

Research Phase II

- *Phase II* 2011: Fukushima and after...
 - ⇒ Reinforcing Safety in Design & Evaluation
 - Requirements Management in terms of <u>Safety</u> Criteria for Design & Evaluation (beyond Usability)
 - Integration of Safety & Usability methods & criteria...
 - STAMP, STPA & SpecTRM proposed during Fall 2011
 - ⇒ Content for uncertain/unpredict<u>ed</u>/unpredict<u>able</u> situations
 - Uncertainty approaches in design (KOMPASS)
 - Adaptive Case Management: shift from process improvement (analytic stage) toward process execution (operations stage)
 - \Rightarrow Accident scenarios & processes
 - Fukushima accident understanding...
 - Considering **multiunit** events & crisis management (Units 1 to 4)
 - Complexity & uncertainty in understanding (i.e. NUREG-1935)
 ⇒ Complexity in design intellectual unmanageability...
 - *Global* approach

Phase II: Integration toward Human Centric <u>Convergence</u>

DESIGN STAGE	Safety Methods	BDI MAS	SOA RA	BPMN	Uncertainty
Main Outputs & Span	- Analysis - Drive Specifications - Drive Implementation	- Sociotechnical Cognitive Modeling - Implementation	- <i>Reference</i> <i>Architecture</i> - Drives Specifications - Drives Implementation	- Standard Notation - Modeling - Implementation	- Sociotechnical Criteria - Recommendations
Artifact(s)	 Interdependent Intent Specifications Human-Computer Interaction Constraints 	 Interaction Service Providers Communication External & Internal viewpoints 	- Interaction Service Providers - Constraints - Quality of Service	- Interaction Service Providers	- Automation types - Limits of Control
User(s)	 Responsibilities Requirements Operator Task models HCI models 	 Roles, Responsibilities, Resources, Services <i>External &</i> <i>Internal</i> viewpoints 	 part of the <i>Social</i> <i>Structure</i> <i>Interaction</i> driven by <i>Intent</i> <i>External</i> viewpoint 	- Information Providers & Consumers	- Expertise - <i>Motivation</i>
Task(s)	- Safety Margins/Constraints - Analysis - Allocation - Dysfunctional Interactions	- Agent plans (partial or complete) - Parallel execution	Achieve Awareness in: - Orchestration - Collaboration - Choreography	- Orchestration - Collaboration - Choreography - Parallel execution	- Process transparency - Dynamic Coupling in Process Control
Organization(s)	- External Interfaces - Environment Models - Audit - Resilience - Adaptability	- no specific support (i.e. any)	- Governance - Regulations - Contracts - Security Model - Flexibility - Agility - Adaptability	- Inherit SOA reference features	- Rigid vs. Flexible - Adaptability
Situation(s)	- Incidents & Accidents explicitly considered - Hazard Analysis	- no specific support (i.e. any)	- Case Analysis (functional & non- functional)	- Incidents & Accidents explicitly considered through Event Escalation	- no specific support (i.e. any)

Phase II: How: Non-Linear Safety methods - retrospective & prospective

- Fukushima Dai-Ichi **Multiunit** Accident Analysis using:
 - primary sources (TEPCO, NISA)
 - secondary sources: (IAEA, NUREG, AREVA and other reports)
 - STAMP: accident understanding...
 - STPA & SpecTRM: Design & Evaluation
- **STAMP output:** identifying main directions for the current design
 - holistic vertical (organizational layers) & horizontal (multiunit) analysis
- **STPA output:** providing **Safety Margins criteria for**
 - Designing the proposed I&C (visualization & controls; processes; decisionmaking under uncertainty)
 - *Evaluating* the proposed I&C
- SpecTRM outputs
 - Create Intent Specifications
 - Perform STPA
 - Verify & Validate Models through *Simulation & Experimentation*

Phase II: STPA - SpecTRM

Refinement		Decomposition >					
		Environme	nt Operator	System and component	s V&V		
	Level 0	Project management plans, status information, safety plan, etc.					
Î	Level 1 System Purpose	Assumptions Constraints	Responsibilities Requirements I/F requirements	System goals, high-level requirements, design constraints, limitations	Hazard Analysis		
	Level 2 System Principles	External interfaces	Task analyses Task allocation Controls, displays	Logic principles, control laws, functional decomposition and allocation	Validation plan and results		
Intent	Level 3 Blackbox Models	Environment models	Operator Task models HCI models	Blackbox functional models Interface specifications	Analysis plans and results		
	Level 4 Design Rep.		HCI design	Software and hardware design specs	Test plans and results		
	Level 5 Physical Rep.		GUI design, physical controls design	Software code, hardware assembly instructions	Test plans and results		
Ŷ	Level 6 Operations	Audit procedures	Operator manuals Maintenance Training materials	Error reports, change requests, etc.	Performance monitoring and audits		

....

DR record from the SpecTRM user guide. © SafeWare 2011

WHAT is to be achieved:

- Design and Evaluate <u>S3D representations</u> of I&C for the Safety Instruments & Controls System (SICS) that aim to <u>improve</u> safety support for <u>decision-making and consequent operations</u> (i.e. crisis management) in an accidental scenario
- Such S3D representations span both situated **Visual aspects** as well as **Collaborative aspects** (joint activity, interaction)
- **Direct Interaction** supported by **touch features** is accorded the main emphasis
 - Controls are embedded in the visual scene

WHAT S3D content:

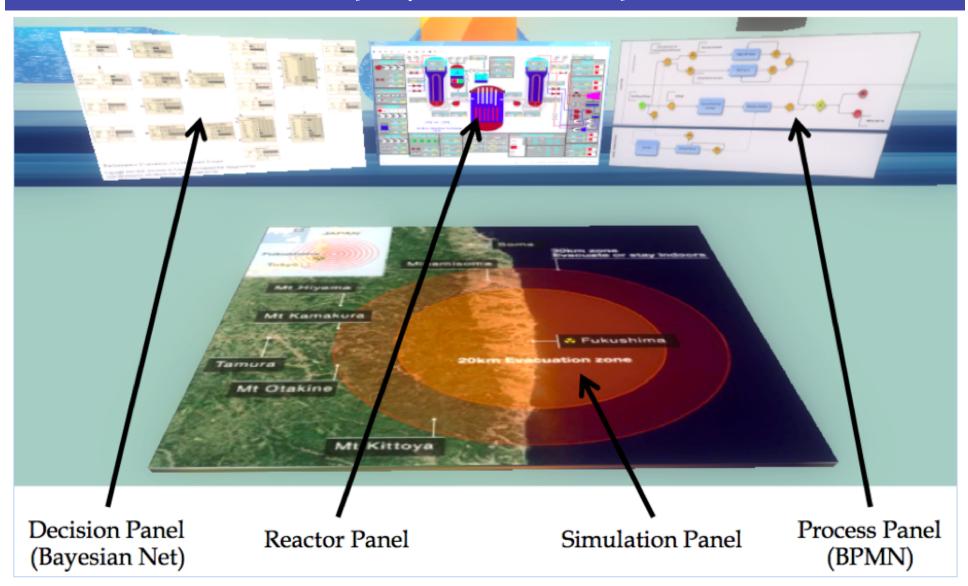
- Two main classes of I&C
 - 1. Internal I&C related to the NPP: temperature, pressure, sociotechnical system states, main plant organs (i.e. reactor, Spent Fuel Pool, Diesel Generators) and their trends
 - 2. External I&C related to the environment: possible impacts on the environment
- **Two classes of processes** (including *analytic* aspects related to states and dynamics) in *normal* & *abnormal* conditions
 - **1. Predefined processes** (if/when available)
 - 2. Adaptive processes in case no predefined processes are available (errors, exceptions, escalation)

WHY such S3D representations & content:

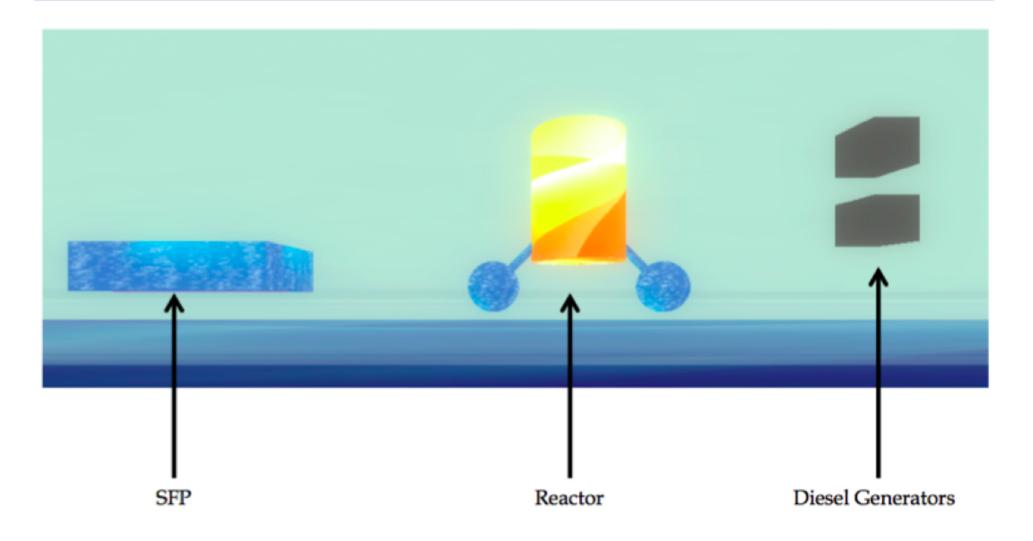
- In current visual environments overloaded with information, S3D representations offer an efficient alternative for tackling information density under time pressure
- **Deep content** related to *Decision Making & Action*
 - Games against 'Nature'
 - Influence Diagrams & Dynamic Bayesian Networks and
 - Imperfect Information Games
 - plans of action (BPMN process representations)
- **S3D mapping of Context Space & Resources Space** for enhancing *understanding & awareness*

Phase II: WHY

WHY such a context:


- The accidental context enables to demonstrate the usefulness of S3D representations & content, supported by relevant devices
- ⇒ <u>Design a minimal autonomous I&C</u> for Vertical & Horizontal communication and collaboration
 - networked handheld devices (i.e. tablets): loss of electrical power (i.e. *Station Black Out*)
 - personal drones in operations: surveillance & monitoring of equipment in inaccessible locations (i.e. due to high radioactivity levels)
- *It is assumed that at least in one location, one S3D display can function...*

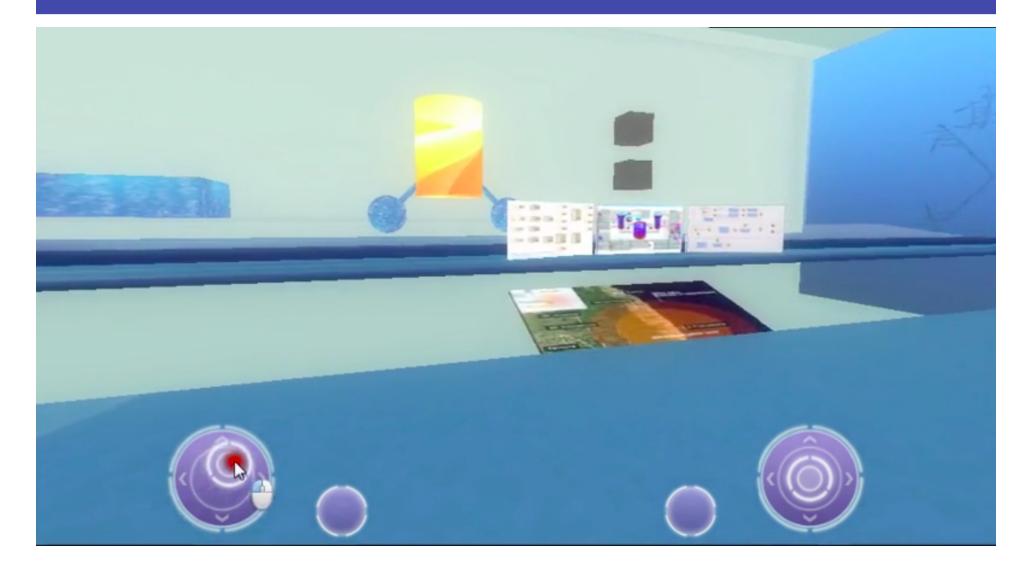
Phase II: How: *Core of the study*


Hard Decision-Making in uncertain / unpredicted / unpredictable situations:

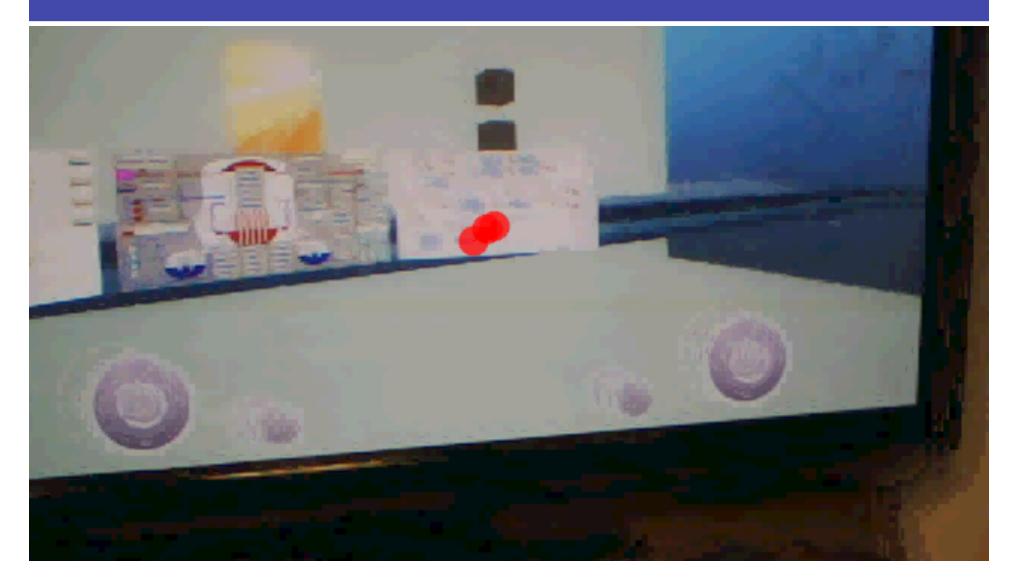
- Based on the *prescriptive decision analysis approach* (*Goal-driven*)
 - Influence Diagrams & *Dynamic* Bayesian Networks : prior (subjective) probabilities (human collaboration)
 - Preferences
 - Risk analysis
- <u>Conflicting Objectives</u>
- Trade-offs/Satisficing/Sacrificing
- ... Adaptive Case Management
- Completed with consequent adaptive plans of action (Event-driven)
 - Adaptive BPMN
 - Coopetition
- Similar approaches: Integrated Risk Picture (SESAR); AgenaRisk
 - Difference: in these approaches, probabilities are proposed ex-ante...

Phase II: How much: Specifications & Implementation

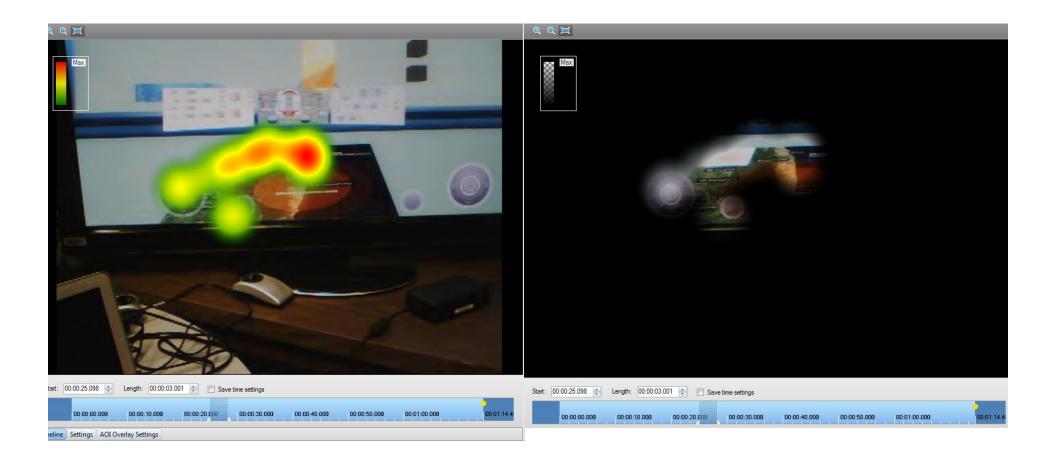
Phase II: How much: Specifications & Implementation

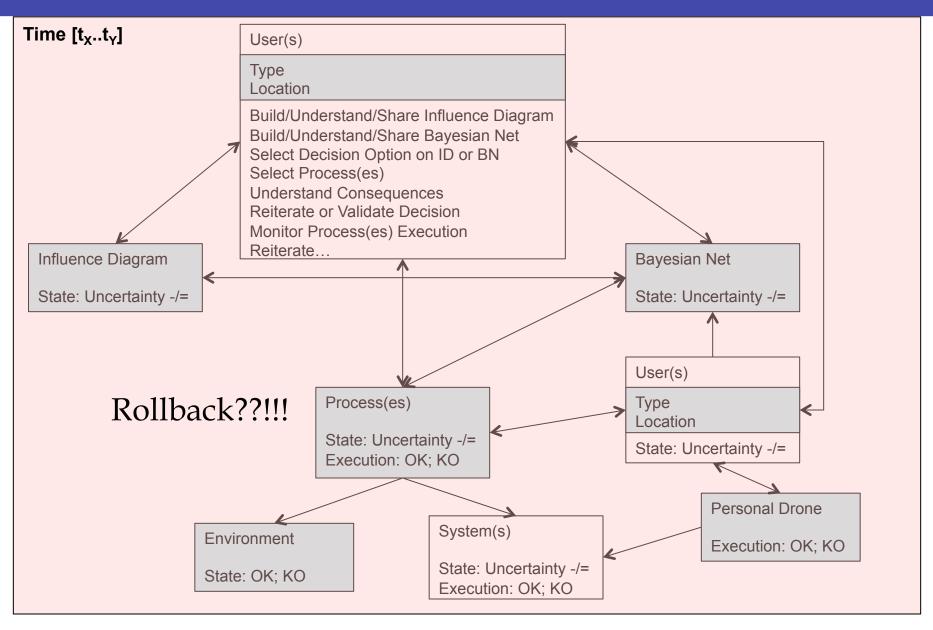

....Multiunit in a near future...

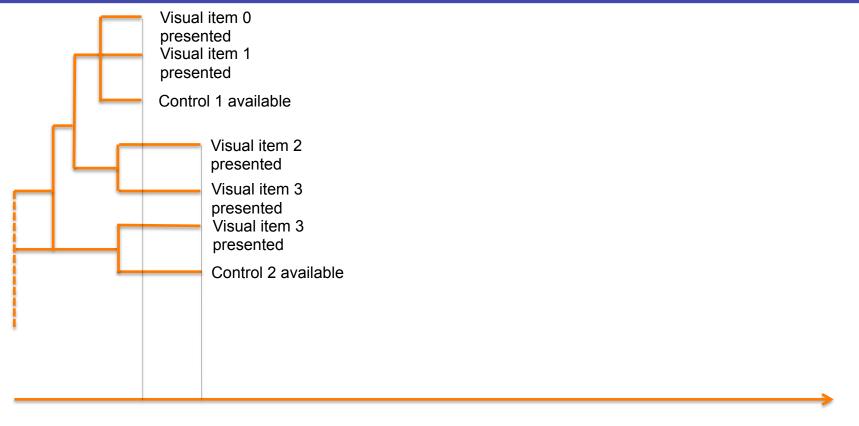
Phase II: How much: *Experiment Design*


<u>Scenarios</u>

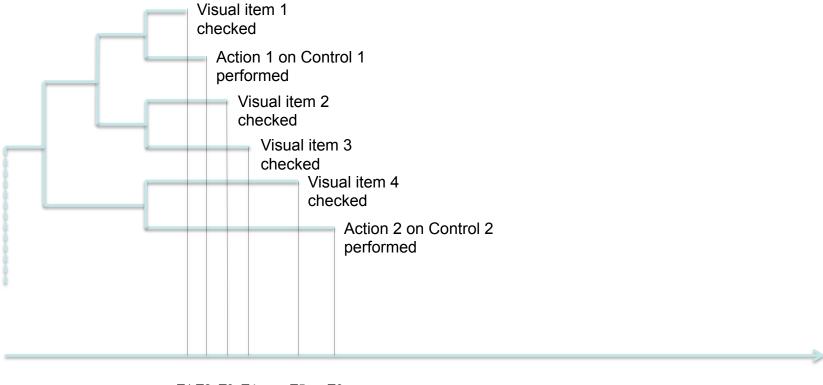
- Based on Life-Critical Role-Playing Game
- Implementing decisions & consequent actions in terms of multiple choices of explicitly valuated spatiotemporal losses / gains (payoffs) - human, technical systems, environmental, financial - under pressure & incentives
- Timeline
- User profiles (personae)
 - Scientific (mathematics; physics,...)
 - Engineering
 - Business, political...


Ongoing Tests & Refinements...




Ongoing Tests - Eye Tracking...

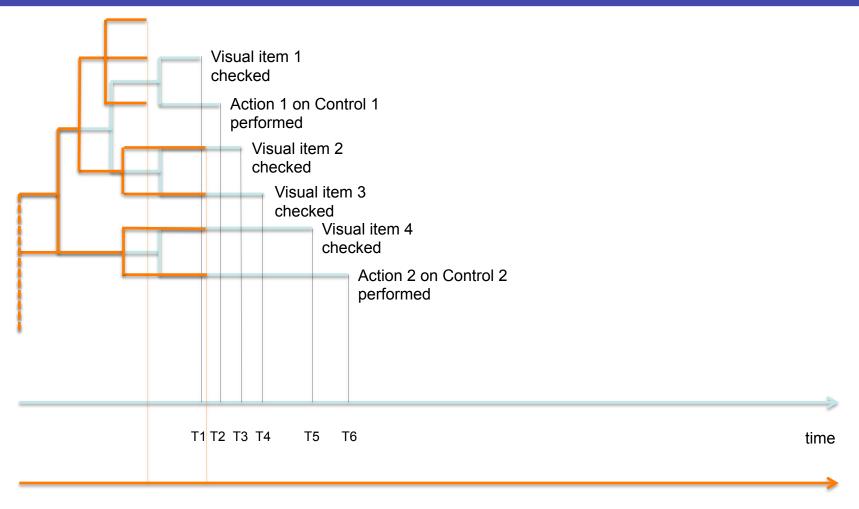
Ongoing Tests - Eye Tracking...



ST1 ST2

System time

System Dynamic Pattern (*ex ante* – i.e. Design)



T1 T2 T3 T4 T5 T6

User time

User Behavior Pattern (ex post)

S.M. Magnusson: T-patterns

Sociotechnical Pattern (ex post)

Conclusion

- Focus on dynamic uncertainty
- Tackle accidental contexts (past and possible) and integrate *user feedback* in design
- Safety on top of Usability
- Integration of Safety and Usability methods for Design & Evaluation
- Multidirectional training: users designers evaluators...

Acknowledgments

- Dr. Nancy Leveson, MIT
- Dr. Margaret Stringfellow, MIT
- Dr. Guy Boy, FIT
- Dr. Semen Köksal, FIT
- Dr. Jeffrey Bradshaw, IHMC
- Dr. Andrew Duchowski, Clemson University
- Dr. Marco Carvalho, FIT
- HF Expert Ludovic Loine, AREVA
- Dr. Sherry Borener, FAA
- Dr. Thierry Bellet, IFSTTAR
- Dr. Gudela Grote, ETH

Questions & Feedback are welcome

Thanks 🕲

Lucas STEPHANE astephane2010@my.fit.edu (+1)321-549-0207