

Integrating Uninhabited Aerial Systems into the NAS

Natasha A. Neogi 1st STAMP/STPA Workshop at MIT April 19th, 2012

Thanks to: Paul Miner, Kelly Hayhurst, Jeff Maddalon, Cesar Munoz, Jae Kim, Cladiu Danilov, Matthew Clark, Siva Banva (WP-AFB)

NextGen (Utopia)

Overview

- Motivation and Certification
 - Or 'Why is it so hard to get a COA'?
- UAVs and Accidents
 - Military Perspectives (WP-AFB)
- STAMP and Implications
 - Global Hawk
- Issues and Conclusions
 - 3Cs (Classification, Criteria, Communication)

Aviation Regulations

- Title 14 Codes for Federal Regulation: Federal Aviation Regulations (FARs) covered in Parts 1-200
 - Part 23: Airworthiness standards for Normal, Utility, Acrobatic, and Commuter Aircraft
 - Part 25: Airworthiness standards for Transport Aircraft
 - Part 91: General Operating & Flight Rules
 - Parts 61,141: Pilot Licensing

Airborne	Ground
FAA regulates	FAA acquires
airborne	and regulates
systems	ground
	systems
Aircraft,	FAA provides
engines,	ATC via CNS
propellers	equipment
certified in	commissioned
compliance	icw FAA
with FARs	Orders &
	Contracts

Ground vs Airbourne

- CNS/ATM ground system compliance is more application specific
 - ADS-B etc.
- Software Guidelines similar
 - RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification
 - RTCA/DO-278, Guidelines for Communication,
 Navigation, Surveillance, and Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance

What about Ground Based CNS components of UAS? e.g., Networked Communications...

Airbourne System Automation

- Aircraft must be airworthy (Part 91.7): Type Certificate
- Airworthiness requirements specific to avionics in FAR Parts (23,25,27,29).(1301,1309)

SAE ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment

SAE ARP 4754: Certification Considerations for Highly-Integrated or Complex Aircraft Systems **Functional Hazard Assessment**

Preliminary System Safety

Assessment

Failure Modes and Effects Analysis

Particular Risks Analysis

Common Mode Analysis

System Safety Assessment

STAMP/STPA?

Allocation of Requirements to Hardware & Software: (RTCA)/DO254 & /DO-178B

FAR Part (23,25).1309 Equipment, Systems, and Installations

Classification of Failure Conditions	No Safety Effect	Minor	Major	Hazardo us	Catastrophi c	 These target requirement
	Allowable Probal	oilities and Softwa	are and Complex I	Hardware Design	Assurance Levels	redundancy
Part 23 Class I	No Requirem ent	<10 ⁻³ Level D	<10 ⁻⁴ Level C/D	<10 ⁻⁵ Level C/D	<10 ⁻⁶ Level C	rigor in design development systems and
Part 23 Class II	No Requirem ent	<10 ⁻³ Level D	<10 ⁻⁵ Level C/D	<10 ⁻⁶ Level C/D	<10 ⁻⁷ Level C	equipment • Compliance
Part 23 Class III	No Requirem ent	<10 ⁻³ Level D	<10 ⁻⁵ Level C/D	<10 ⁻⁷ Level C	<10 ⁻⁸ Level B/C	these requiremen
Part 23 Class IV Commut er	No Requirem ent	<10 ⁻³ Level D	<10 ⁻⁵ Level C/D	<10 ⁻⁷ Level B/C	<10 ⁻⁹ Level A/B	drives the systems an equipment
Part 25 Transpor from FAA Advi	No Requirem se्राभुCirculars, 2	<10⁻⁵ 3. Læv.e.l y .D em	<10 ⁻⁵ Level Safety Analysis	<10 ⁻⁷ Level and Ascessment	<10 ⁻⁹ Level , and 25.1309: S	System Design & Analysis

-Thanks to Kelly Hayhurst, Jeff Maddelon and Chuck Johnson

- These targets drive requirements for redundancy and rigor in design and development of systems and equipment
- Compliance with these requirements drives the *cost* of systems and equipment

But for a UAS...

Classification of Failure Conditions	No Safety Effect	Minor	Major	Hazardous	Catastrophic
UAS Class I?	No Requireme nt	?	?	?	?
UAS Class II?	No Requireme nt	?	?	?	?
•••	No Requireme nt	?	?	?	?

Hmmm...Need Insight (and Data)

Overview

- Motivation and Certification
 - Or 'Why is it so hard to get a COA'?
- UAVs and Accidents
 - Military Perspectives (WP-AFB)
- STAMP and Implications
 - Global Hawk
- Issues and Conclusions
 - 3Cs (Classification, Criteria, Communication)

US Army: Hunter Aircraft (32)

• Twin-engine, short-range (144 nm) tactical aircraft

Payload capacity: 200 lb

Endurance: 1200 nm

Weight: 1600 pounds

Wingspan: 29 ft

Ceiling: 15,000 ft,

Cruise: 100 kts

Cost: \$1.2M (Schaefer, 2003).

- Hunter takes off (20%) and lands (47%) using an External Pilot (EP) standing next to the runway in visual contact with the aircraft
 - Reverse control issues
 - Autopilot display (IP) vs (EP) control

US Army: Shadow Aircraft (24)

Shadow 200 short-range surveillance aircraft

Payload capacity: 60 lbs

Endurance: 68nm

- Wingspan: 9 ft

Weight: 330 lbs

Ceiling: 14,000 ft

Cruise: 82 kts

- Cost: \$325,000

- Shadow does not use an external pilot, depends on a launcher for takeoffs and an automated landing system for recovery (Tactical Automated Landing System).
 - GCS pilot has no visual/sensors on a/c during landing (engine kill error)

Navy Pioneer RQ-2 Aircraft (239)

- Single-engine, propeller-driven aircraft
 - Payload capacity: 72 lbs
 - Endurance: 400 nm
 - Wingspan: 17 ft
 - Weight: 452 lbs
 - Ceiling: 15,000 ft
 - Cruise: 80 kts
 - Cost: \$650,000

- Pioneer requires an EP for takeoff (10%) and landing (68%)
 - 3 mode GCS: autonomous, IP(flight)/autopilot(waypoint),joystick
- Since 1985 it has logged over 20,000 hr flight time
 - Aircrew coordination, weather related, enemy action

Predator MQ-(1,9) Specifications

Flown from within a GCS: joystick, rudder pedals, forward looking camera MQ-1 MQ-9 (30°) 10,000 lbs Gross Weight 2,250 lbs 28.7 ft 36.2 ft. Length Wingspan 48.7 ft 64 ft 25,000 ft 45,000 ft Ceiling Radius 400 nm 400 nm 24 + hrs24 + hrsEndurance 450 lb Payload 750 lb (internal) 3000 lb (external) Cruise Speed 70 kts 220 kts Aircraft cost (w/out sensors) \$6 M \$2.4 M System Cost (4 Avs) \$26.5 M \$47 M

US Air Force: Predator MQ1, MQ-9 (15)

- GCS Handoff: Mishap Crew incorrectly ordered checklist accomplishment → engine and stability augmentation kill (uncommanded dive and crash)
- Pilot accidentally activated a program that erased the internal random access memory onboard the aircraft during flight.
- Menu selection allocation associated with function keys on the GCS keyboard: controlling the lights on the predator is similar to commanding an engine kill
- Problems with HUD, HDD, Alerts/Alarms, Autopilot
 - HUD:vision, attitude & RPM indicator, symbology lacks contrast
 - HDD: commands unprotected, too many levels,inconsistent operational value ranges
 - No indication on the HUD of status of autopilot, no override

UAV Accidents

Summary of causes of Military UAV accidents

Taken from: K. W. Williams, A Summary of Unmanned Aircraft Accident/Incident Data: Human Factors Implications, 2004.

Overview

- Motivation and Certification
 - Or 'Why is it so hard to get a COA'?
- UAVs and Accidents
 - Military Perspectives (WP-AFB)
- STAMP and Implications
 - Global Hawk
- Issues and Conclusions
 - 3Cs (Classification, Criteria, Communication)

US Air Force: Globalhawk (3)

Globalhawk Specifications

	RQ-4A
Weight	26,750 lbs
Length	44.4 ft
Wingspan	116.2 ft
Ceiling	65,000 ft
Radius	5,400 nm
Endurance	32 hrs
Payload	1,950 lbs
Cruise Speed	345 kts
Aircraft Cost	\$20 M
System Cost	\$57 M

Global Hawk: Accident of Note

- Pilot and crew actions pre-programmed
 - Mission planning process begins 270 days a priori
 - Mission planners become actively involved 90 days prior to flight
 - Takes 3-5 weeks to write a flight plan
 - Validation takes 10 days, starts 18 days a priori to flight
- Aircraft suffered from inflight problem with temperature regulation of avionics, landed at preprogrammed alternative airport for service
- Taxi speed of 155 kts was commanded at this waypoint (automated mission planning software)
 - Hex status reports

Accident and Hazard

Accident

 Class A: An accident in which the resulting total cost of property damage is \$1,000,000 or more; an aircraft or missile is destroyed, missing, or abandoned; or an injury and/or occupational illness results in a fatality or permanent total disability. (US Army Classification System)

Hazard

 Loss or damage of secure asset for prolonged duration, rendering mission incomplete/ineffective.

Safety Constraint

 The safety control structure must prevent loss of asset or mission compromise. Additionally, structure must prevent the exceeding of power/dynamic actuation/structural limits of asset.

Mission Planning System Dynamics

Detailed Control Structure

Mission Plan

Operational Mission Planning:

Safety Requirements and Constraints: Provide a strategic and tactical plan that services targets with given route.

Context in Which Decisions Made:

Multi-Organizational Team, over different timespans

Inadequate Control Actions: No consistent method to identify priority of contingency plans and values in the face of online user inputs. • No established method to create indexed optional flight plans with current operational values.

Process Model Flaws: Contingency plans are developed far in advance, without clear operational/environmental constraints.

Feedback: Flight plans flown are not annotated with crew intent for analysis

Control Inputs Mission Code Global Hawk Control HW/ SW Flight Actu

Mission Execution Crew:

Safety Requirements and

Constraints: Provide a means of online monitoring and intervention during mission.

Context in Which Decisions Made:

A trained operational crew, possibly w/o mission planning experience

Inadequate Control Actions: No consistent method to update execution values during contingency execution. No established method to intervene and override control inputs during immediate term execution.

Mental Model Flaws: Pilot crews would execute contingency plans without reference to prior execution values.

Feedback: No direct means to impact future mission plans for executional efficiency in face of intervention.

Flown Trajectories

-ation

Environment

Category of Requirements Inconsistent/Incomplete

- Authority and Autonomy
 - Importance of state feedback information
 - Mode inconsistency
- Sensor and Actuator
 - Latency and delay
- Control software errors
 - Software handling of signal priority
 - Delay in input processing
 - Control software algorithm system dynamic model
- Mental Model/Human System Integration Errors

Overview

- Motivation and Certification
 - Or 'Why is it so hard to get a COA'?
- UAVs and Accidents
 - Military Perspectives (WP-AFB)
- STAMP and Implications
 - Global Hawk
- Issues and Conclusions
 - 3Cs (Classification, Criteria, Communication)

Classification Scheme(s)

DoD UAS Groups

UAS Groups	Maximum Weight (lbs) (MGTOW)	Normal Operating Altitude (ft)	Speed (kts)	Representative UAS	
Group 1	0 – 20	<1200 AGL	100	Raven (RQ-11), WASP	Raven
Group 2	21 – 55	<3500 AGL	250	ScanEagle	ScanEagle
Group 3	< 1320	< FL 180	< 250	Shadow (RQ-7B), Tier II / STUAS	Shadow
Group 4	>1320	VIL 100	Any	Fire Scout (MQ-8B, RQ-8B), Predator (MQ-1A/B), Sky Warrior ERMP (MQ-1C)	MO-1/Predator
Group 5		> FL 180	> FL 180	Reaper (MQ-9A), Global Hawk (RQ-4), BAMS (RQ-4N)	RQ-4/Global Hawk

What about:

- Operational Environment
 - Urban vs Enroute
- Levels of Autonomy
 - Onsite vs Remote pilots
- Operational Purpose
 - Frangability
- Long Term vs. Rapid Deployment
 - Mission Plan Latencies, Uncertainty

Understand assumptions, rationale, implications to enable cross-comparison

Airworthiness Criteria: Self Separation

Networked Communications

- UAS Communication, Command and Control (C3) architecture must be secure and safe
 - Can contain both ground and airbourne elements
 - Spectrum?
 - Conforming and Byzantine collusive agents must be tolerated
- Integration of safety critical C3 systems and current ATC communication must be handled
 - Continuous availability of CNS for piloted a/c
 - Latency of remote commands bounded
- Human System Integration Issues are the projected leading cause of accidents based on current data

Conclusions

- Need hazard and risk-related data collection to support development of type design criteria and standards
- Need to evaluate a spectrum of separation assurance systems with different functional allocations (levels of authority and autonomy) and their interaction with mixed equipage aircraft
- Human System Integration Issues are the projected leading cause of accidents based on current data

Questions?

Natasha.Neogi@nianet.org

