Using STPA in the Design of a Nuclear Power Plant Control Room

A. Lucas STEPHANE
MS Business Intelligence
MS Experimental Psychology

Research Assistant
Florida Institute of Technology

April 19, 2012
MIT
Research Context (ongoing PhD) – digitalization of NPP MCR...

- **Sponsor**: AREVA R&D – Human Factors Department
- **Mission**: Force of Proposals
 - Early exploration of relevant emergent technologies

- **Vision**: sociotechnical Human Centric Convergence
 - Inter-domain (Aeronautics ➔ Nuclear, …)
 - Interdisciplinary (Psycho, Eco, Socio, Techno, Organizational)

- **Research Focus**: Design & Evaluation of **Instruments & Controls (I&C)**
 - 3 main layers of intertwined requirements
 - Presentation
 - Content
 - Joint Activity (co-activity, interaction)

- **Target System**: **Safety Instruments & Controls System (SICS)**
- **Target location**: Nuclear Power Plant Main Control Room (**NPP MCR**)
- **Target population**: **Knowledge Workers**
Research Phase I

- **Phase I - 2010: Exploration & Identification of**
 - Technology
 - Stereoscopic 3D (S3D): compact & natural presentation/visualization
 - 3D Gaming Engines: *full* interactivity (vs. animation)
 - Touch surfaces (fixed & mobile): joint activity/interaction
 - personal Drone *in operations*: accessing dangerous locations
 - Content
 - plant subsystems (i.e. *partial* approach, *single unit*)
 - *Incident* scenarios
 - Sociotechnical modeling
 - Belief Desire Intention Multi-Agent Systems
 - *External Viewpoint*: Roles, Responsibilities, Resources, Services
 - *Internal Viewpoint*: Beliefs, Desires, Intentions
 - Service Oriented Architecture *Reference Architecture*
 - techno mediation + management for Social Structures
 - **Usability** Design & Evaluation methods
 - Situation Awareness (*rational external* aspects)
 - *Self* Awareness (motivation, emotions, loss-aversion, cognitive dissonance)
 - Workload
 - Eye Tracking
Phase I: Lab Configuration...

- Auto-stereoscopic Display
- S3D Projector
- Data Glove
- S3D Laptop
- S3D Touch Display
Phase I: Lab Configuration... Touch surfaces: Tablet (*Remote Desktop*) & Touch Screen
Phase I: Lab Configuration...Personal Drone – Fly using tablet

Video Streamed on iPad from Drone frontal camera
Phase I: Lab Configuration...Eye Tracking
Research Phase II

• *Phase II - 2011: Fukushima and after…*
 ⇒ Reinforcing Safety in Design & Evaluation
 ▪ Requirements Management in terms of Safety Criteria for Design & Evaluation (beyond Usability)
 ▪ Integration of Safety & Usability methods & criteria…
 ▪ STAMP, STPA & SpecTRM proposed during Fall 2011

 ⇒ Content for uncertain/unpredicted/unpredictable situations
 ▪ Uncertainty approaches in design (KOMPASS)
 ▪ Adaptive Case Management: shift from process improvement (analytic stage) toward process execution (operations stage)

 ⇒ Accident scenarios & processes
 ▪ Fukushima accident understanding…
 ▪ Considering multiunit events & crisis management (Units 1 to 4)
 ▪ Complexity & uncertainty in understanding (i.e. NUREG-1935)
 ⇒ Complexity in design – intellectual unmanageability…
 ▪ Global approach
Phase II: Integration toward Human Centric Convergence

<table>
<thead>
<tr>
<th>DESIGN STAGE</th>
<th>Safety Methods</th>
<th>BDI MAS</th>
<th>SOA RA</th>
<th>BPMN</th>
<th>Uncertainty</th>
</tr>
</thead>
</table>
| **Main Outputs & Span** | - Analysis
- Drive Specifications
- Drive Implementation | - Sociotechnical Cognitive Modeling
- Implementation | - Reference Architecture
- Drives Specifications
- Drives Implementation | - Standard Notation
- Modeling
- Implementation | - Sociotechnical Criteria
- Recommendations |
| **Artifact(s)** | - Interdependent
- Intent Specifications
- Human-Computer Interaction
- Constraints | - Interaction Service Providers
- Communication
- External & Internal viewpoints | - Interaction Service Providers
- Constraints
- Quality of Service | - Interaction Service Providers | - Automation types
- Limits of Control |
| **User(s)** | - Responsibilities
- Requirements
- Operator Task models
- HCI models | - Roles, Responsibilities, Resources, Services
- External & Internal viewpoints | - part of the Social Structure
- Interaction driven by Intent
- External viewpoint | - Information Providers & Consumers | - Expertise
- Motivation |
| **Task(s)** | - Safety Margins/Constraints
- Analysis
- Allocation
- Dysfunctional Interactions | - Agent plans (partial or complete)
- Parallel execution | Achieve Awareness in:
- Orchestration
- Collaboration
- Choreography | - Orchestration
- Collaboration
- Choreography
- Parallel execution | - Process transparency
- Dynamic Coupling in Process Control |
| **Organization(s)** | - External Interfaces
- Environment Models
- Audit
- Resilience
- Adaptability | - no specific support (i.e. any) | - Governance
- Regulations
- Contracts
- Security Model
- Flexibility
- Agility
- Adaptability | - Inherit SOA reference features | - Rigid vs. Flexible
- Adaptability |
| **Situation(s)** | - Incidents & Accidents explicitly considered
- Hazard Analysis | - no specific support (i.e. any) | - Case Analysis (functional & non-functional) | - Incidents & Accidents explicitly considered through Event Escalation | - no specific support (i.e. any) |

© Lucas STEPHANE, 04/19/2012 STAMP/STPA Workshop, MIT
Phase II: How: Non-Linear Safety methods - retrospective & prospective

- Fukushima Dai-Ichi **Multiunit** Accident Analysis using:
 - primary sources (TEPCO, NISA)
 - secondary sources: (IAEA, NUREG, AREVA and other reports)
 - STAMP: accident understanding...
 - STPA & SpecTRM: Design & Evaluation

- **STAMP output**: identifying main directions for the current design
 - holistic vertical (organizational layers) & horizontal (multiunit) analysis

- **STPA output**: providing **Safety Margins criteria for**
 - *Designing* the proposed I&C (visualization & controls; processes; decision-making under uncertainty)
 - *Evaluating* the proposed I&C

- **SpecTRM outputs**
 - Create Intent Specifications
 - Perform STPA
 - Verify & Validate Models through *Simulation & Experimentation*
Phase II: STPA - SpecTRM

DR record from the SpecTRM user guide. © SafeWare 2011
Phase II: WHAT

WHAT is to be achieved:

- Design and Evaluate **S3D representations** of I&C for the Safety Instruments & Controls System (*SICS*) that aim to **improve safety support for decision-making and consequent operations** (i.e. crisis management) in an accidental scenario

- Such S3D representations span both situated **Visual aspects** as well as **Collaborative aspects** (joint activity, interaction)

- **Direct Interaction** supported by **touch features** is accorded the main emphasis
 - Controls are embedded in the visual scene
Phase II: WHAT

WHAT S3D content:

- **Two main classes of I&C**
 1. **Internal I&C** related to the NPP: temperature, pressure, sociotechnical system states, **main plant organs** (i.e. reactor, Spent Fuel Pool, Diesel Generators) and their **trends**
 2. **External I&C** related to the **environment**: possible impacts on the environment

- **Two classes of processes** (including *analytic* aspects related to states and dynamics) in *normal & abnormal* conditions
 1. **Predefined processes** (if/when available)
 2. **Adaptive processes** in case no predefined processes are available (errors, exceptions, escalation)
Phase II: WHY

WHY such S3D representations & content:

- In current visual environments overloaded with information, **S3D representations** offer an efficient alternative for **tackling information density under time pressure**

- **Deep content** related to *Decision Making & Action*
 - Games against ‘Nature’
 - Influence Diagrams & *Dynamic* Bayesian Networks
 - Imperfect Information Games
 - plans of action (*BPMN* process representations)

- **S3D mapping of Context Space & Resources Space** for enhancing *understanding & awareness*
Phase II: WHY

WHY such a context:

- The accidental context enables to demonstrate the usefulness of S3D representations & content, supported by relevant devices

⇒ **Design a minimal autonomous I&C for Vertical & Horizontal communication and collaboration**

 - networked handheld devices (i.e. tablets): loss of electrical power (i.e. Station Black Out)
 - personal drones in operations: surveillance & monitoring of equipment in inaccessible locations (i.e. due to high radioactivity levels)

- It is assumed that at least in one location, one S3D display can function...
Phase II: How: **Core of the study**

Hard Decision-Making in uncertain / unpredicted / unpredictable situations:

- Based on the *prescriptive decision analysis approach* (*Goal-driven*)
 - Influence Diagrams & *Dynamic* Bayesian Networks: prior (subjective) probabilities (human collaboration)
 - Preferences
 - Risk analysis
 - *Conflicting Objectives*
 - Trade-offs / Satisficing / Sacrificing
 - ... Adaptive Case Management

- Completed with *consequent adaptive plans of action* (*Event-driven*)
 - Adaptive BPMN
 - Coopetition

- Similar approaches: Integrated Risk Picture (SESAR); AgenaRisk
 - Difference: in these approaches, probabilities are proposed ex-ante...
Phase II: How much: Specifications & Implementation
Phase II: How much: **Specifications & Implementation**

…Multiunit in a near future…
Phase II: How much: *Experiment Design*

Scenarios

- Based on *Life-Critical Role-Playing Game*
- Implementing *decisions & consequent actions in terms of multiple choices of explicitly valuated spatiotemporal losses / gains (payoffs)* - human, technical systems, environmental, financial - under pressure & incentives
- Timeline
- User profiles (personae)
 - Scientific (mathematics; physics,…)
 - Engineering
 - Business, political…
Ongoing Tests & Refinements...
Ongoing Tests - Eye Tracking...
Ongoing Tests - Eye Tracking...
Perspectives: STPA for sociotechnical spatiotemporal patterns

Influence Diagram
State: Uncertainty -/=

Bayesian Net
State: Uncertainty -/=

Process(es)
State: Uncertainty -/= Execution: OK; KO

User(s)
State: Uncertainty -/=

Type
Location

Build/Understand/Share Influence Diagram
Build/Understand/Share Bayesian Net
Select Decision Option on ID or BN
Select Process(es)
Understand Consequences
Reiterate or Validate Decision
Monitor Process(es) Execution
Reiterate…

Environment
State: OK; KO

System(s)
State: Uncertainty -/= Execution: OK; KO

Personal Drone
Execution: OK; KO

Time \([t_X..t_Y]\)
Perspectives: STPA for sociotechnical spatiotemporal patterns

System Dynamic Pattern (ex ante – i.e. Design)
User Behavior Pattern (ex post)

S.M. Magnusson: T-patterns
Perspectives: STPA for sociotechnical spatiotemporal patterns

Sociotechnical Pattern (*ex post*)
Conclusion

• Focus on dynamic uncertainty
• Tackle accidental contexts (past and possible) and integrate *user feedback* in design

• Safety on top of Usability
• Integration of Safety and Usability methods for Design & Evaluation

• Multidirectional training: users – designers – evaluators…
Acknowledgments

• Dr. Nancy Leveson, MIT
• Dr. Margaret Stringfellow, MIT

• Dr. Guy Boy, FIT
• Dr. Semen Köksal, FIT
• Dr. Jeffrey Bradshaw, IHMC
• Dr. Andrew Duchowski, Clemson University
• Dr. Marco Carvalho, FIT

• HF Expert Ludovic Loine, AREVA

• Dr. Sherry Borener, FAA
• Dr. Thierry Bellet, IFSTTAR
• Dr. Gudela Grote, ETH
Discussion...

Questions & Feedback are welcome

Thanks 😊

Lucas STEPHANE
astephane2010@my.fit.edu
(+1)321-549-0207