Applicability / Compatibility of STPA with FAA Regulations & Guidance

First STAMP/STPA Workshop

Presented by:
Peter Skaves, FAA Chief Scientific and Technical Advisor for Advanced Avionics
Briefing Objectives

First Stamp/STPA Workshop
✓ Airplane System Design Assurance Process
✓ Evolving Aircraft Avionics Complexity
✓ Federated Systems Architecture
✓ Redundancy & Fault Handling
✓ Integrated Modular Avionics
✓ Software Versus Requirements Errors
✓ STAMP/STPA Discussion Items
✓ Requirements Allocation
✓ HW / SW and System Processes
✓ Guideline Documents
✓ System Development Lifecycle
✓ Cyber Security & ARP 4754a
✓ Applicability / Compatibility of STPA
✓ Discussion and wrap-up
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>AEH</td>
<td>Airborne Electronic Hardware</td>
</tr>
<tr>
<td>ARP</td>
<td>Aerospace Recommended Practices</td>
</tr>
<tr>
<td>ARP 4754a</td>
<td>Guidelines for Development of Civil Aircraft and Systems</td>
</tr>
<tr>
<td>BITE</td>
<td>Built-in Test Equipment</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial-Off-The-Shelf</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DO-178</td>
<td>Software Considerations in Airborne Systems and Equipment Certification</td>
</tr>
<tr>
<td>DO-254</td>
<td>Design Assurance Guidance for AEH</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IMA</td>
<td>Integrated Modular Avionics</td>
</tr>
<tr>
<td>NextGen</td>
<td>Next Generation Air Transportation System</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Aviation Regulation</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>STAMP</td>
<td>Systems Theoretic Accident Model and Processes</td>
</tr>
<tr>
<td>STPA</td>
<td>System Theoretic Process Analysis</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
</tbody>
</table>
Examples of airplane systems certification rules and guidance

✓ FAR 25.1301 “General Requirements for Intended Function”
✓ FAR 25.1309 “Equipment Systems and Installation”
✓ AC 20-152 “Invokes RTCA DO-254 “Design Assurance Guidance for Airborne Electronic Hardware”
✓ AC 20-115B “Invokes RTCA DO-178B Software Guidance”
✓ AC 20-174 “Invokes ARP 4754a “Guidelines for Development of Civil Aircraft and Systems”
✓ ARP 4761 “Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems”
Evolving Aircraft Avionics Complexity & Systems Integration Issues (sheet 1 of 2)

- Aircraft avionics & systems integration issues
 - Difficulties in analyzing and testing avionics systems requirements due to complexity
 - Aircraft and systems level requirements validation & verification
 - Transitioning from federated architectures to Integrated Modular Avionics (IMA) systems
 - Predicting system and pilot response in the presence of failures
 - Numerical probability limitations
 - Software and requirements process error contributions
 - System development and safety assessment interwoven or separate processes
 - Aircraft integration with operating environment (e.g., NextGen)
The current trend in system design involves increased interaction between aircraft functions and between the digital systems and equipment that implement those functions.

Increased interactions increase the possibilities for errors with functions that are performed jointly across multiple systems.

Traditional methods of demonstrating compliance to federated system architectures, do not adequately support validation & verification of multiple complex systems.

Since many aircraft/system-level decisions are fundamental to the safety aspects of aircraft design and operation, additional methods to mitigate and reduce system errors are needed.
Federated System Architecture

- Triplex Redundancy
- Flight Control Systems
- With independent Backup system
- Dual Redundancy
- Flight Management Computers
- Single Strand
- ACARS Communication System
Federated Avionics Computer Architecture

- **Computer Architecture**
 - CPU
 - Program Memory (e.g., Flight Control Software)
 - RAM Memory
 - Digital Busses (e.g., ARINC 429)
 - Discrete I/O
 - Variable Analog
 - Power Supply
 - Chassis

- **Strengths**
 - Isolation of faults
 - Failure analysis and fault detection are enhanced

- **Weakness**
 - Duplication of hardware resource
 - Dedicated airborne software program for each avionics computer
Redundancy & Fault Handling

- Avionics Hardware / Software Redundancy & Fault Handling:
 - Typically dual or triple channel
 - Voting planes are used to detect and isolate various sensors and aircraft interface inputs
 - Built-in Test Equipment (BITE) software are used for internal computer validity checks (e.g., Memory, CPU)

- Common mode failure mitigation may require independent back-up systems
- Examples of independent back-up systems include Standby Flight Instruments or mechanical backup systems
IMA Notional Diagram

Example: TWO cabinets replace over 100 Federated Systems
Integrated Modular Avionics (IMA) Computer Resource

- **Computer Architecture**
 - CPU
 - Memory Management Units
 - RAM Memory
 - Digital Busses (e.g., ARINC 429)
 - Discrete I/O
 - Variable Analog
 - Power Supply
 - Chassis

- **Strengths**
 - Shared Hardware Resources
 - Software programs are “swapped” and execute concurrently on same computer platform

- **Weakness**
 - Failure analysis, fault detection & isolation of faults are more difficult
 - Common mode fault vulnerability
Common Mode Failure Mitigation

- **Boeing 777 Fly-by-Wire Flight Control architecture**
 - Three digital Flight Control Computers
 - Analog electric back-up system to mitigate generic common mode faults

- **C-17 Cargo Airplane**
 - Fly-by-Wire Flight Control System
 - Full Mechanical Back-up

- **Boeing 737/747/757/767 Series Airplanes**
 - Do not require electric power for continued safe flight and landing with the exception of the battery backup bus for the Standby Flight Instruments
 - Full mechanical backup Flight Control System
Boeing 777 Flight Deck
Software Versus Requirements Errors

- Airborne avionics system problems are reported as “software problems, anomalies, bugs or glitches”
- Many airborne avionics system problems are not caused during the software development process
- Perfect software does not mean the airborne system requirements are perfect
- Incomplete or incorrect requirements are the root cause of most avionics system failures
- Development processes for Civil Aircraft and Systems are being emphasized
- Robust Integration of highly complex systems at the airplane level is one of the keys to success
Validation vs. Verification

• VALIDATION: The determination that the requirements for a product are correct and complete.

 Are we building the right aircraft / system / function / item?

• VERIFICATION: The evaluation of an implementation of requirements to determine that they have been met.

 Did we build the aircraft / system / function / item right?

Both validation and verification apply to every requirement
Proposes an alternative process to current FAA safety assessment methods

States that traditional approaches to safety analysis assume that accidents are caused by component failures

- Worked well with legacy aircraft that had simple conservative designs
- Does not work as well with very complex systems that are highly integrated with other systems
- Extensive use of software allows very complex systems to be constructed, resulting in an increased potential for accidents from unsafe interactions among non-failed components
- Failures resulting from unplanned behavior of software dependent systems may occur
STAMP / STPA Discussion Items

- STAMP (and STPA) extends the safety analysis to include non-linear, indirect, and feedback relationships among events
- Extends the traditional approach to consider new accidents caused by component interactions, human mistakes, management and organizational errors and software errors (particularly requirements errors)
- STPA recognizes that accidents result not only from system component failures but also from interactions among system components that violate system safety constraints
- System Safety is reformulated as a system control problem rather than a component reliability problem
Requirements Allocation

4754A Development Assurance

DO-178B and DO-254 Assurance
Requirements Allocation

<table>
<thead>
<tr>
<th>System A Requirements</th>
<th>4754A Development Assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validates that the requirements are correct and complete</td>
</tr>
</tbody>
</table>

| DO-178B and DO-254 Assurance |
Requirements Allocation

4754A Development Assurance
 Validates that the requirements are **correct** and **complete**
 Allocates requirements to software and AEH Items

DO-178B and DO-254 Assurance
Requirements Allocation

System A Requirements
- **Requirements Allocated to Software**
- **Requirements Allocated to AEH**

4754A Development Assurance
- Validates that the requirements are correct and complete
- Allocates requirements to software and AEH Items

DO-178B and DO-254 Assurance

Requirements Allocated to Software

Requirements Allocated to AEH

Input

Input
Requirements Allocation

- System A Requirements
 - Requirements Allocated to Software
 - Requirements Allocated to AEH

4754A Development Assurance
Validates that the requirements are correct and complete
Allocates requirements to software and AEH Items

DO-178B and DO-254 Assurance
Assume the requirements are correct and complete
Requirements Allocation

4754A Development Assurance
Validates that the requirements are **correct** and **complete**
Allocates requirements to software and AEH Items

DO-178B and DO-254 Assurance
Assume the requirements are **correct** and **complete**
Develop the software and AEH
Verify that the software and AEH meets their requirements
HW / SW and System Processes

- DO-254 (HW), DO-178 (SW) and ARP 4754A (System), are all assurance processes
 - Invoked formally by FAA advisory circulars
 - Harmonized with International Civil Aviation Authorities
 - Establishes confidence that the development has been accomplished in a sufficiently disciplined manner to limit the likelihood of development and requirements errors that could impact aircraft safety
 - Assurance level establishes the level of process rigor which is commensurate with the functional failure condition
 - They are all dependent on each other
Guideline Documents

Safety Assessment Process Guidelines & Methods (ARP 4761)

Aircraft & System Development Processes (ARP 4754 / ED-79)

Guidelines for Integrated Modular Avionics (DO-297/ED-124)

Electronic Hardware Development Life-Cycle (DO-254 / ED-80)

Software Development Life-Cycle (DO-178B/ED-12B)

Safety Assessment of Aircraft in Commercial Service (ARP 5150 / 5151)

Operation

Development Phase

In-Service/Operational Phase
Aircraft or System Development Lifecycle

INTEGRAL PROCESSES

- 5.1 SAFETY ASSESSMENT
- 5.2 DEVELOPMENT ASSURANCE LEVEL ASSIGNMENT
- 5.3 REQUIREMENTS CAPTURE
- 5.4 REQUIREMENTS VALIDATION
- 5.6 CONFIGURATION MANAGEMENT
- 5.7 PROCESS ASSURANCE
- 5.8 CERTIFICATION & REGULATORY AUTHORITY COORDINATION

CONCEPT

AIRCRAFT FUNCTION DEVELOPMENT

ALLOCATION OF AIRCRAFT FUNCTIONS TO SYSTEMS

DEVELOPMENT OF SYSTEM ARCHITECTURE

ALLOCATION OF SYSTEM REQUIREMENTS TO ITEMS

SYSTEM IMPLEMENTATION

DATA & DOCUMENTATION
Aeronautical Systems Security & ARP 4754a

The existing Code of Federal Regulations does not specifically address cyber security vulnerabilities

- Special Conditions have been Issued for certain Boeing and Airbus Airplanes
- Ground based Information Technology (IT) networks are able to read/write information to aircraft avionics systems
- RTCA SC-216 Aeronautical Systems Security is developing industry Standards
- Current proposals include adding cyber security requirements to the ARP 4754a development process
Possible Architecture & Infrastructure

Satellite comms

VHF/HF comms

CSD, SCCM or Engineer

Airline Network

Fileserver (optional)

QAR

1st Officer

Captain

Ethernet router

Antenna

Wireless bridge

802.11 ground comms

Mobile device for refueller/dispatcher

Wireless link at head of stand
Applicability / Compatibility of STPA

- Need to identify gaps in existing FAA guidance material that STPA would address (would require review of the new ARP 4754a and proposed ARP 4761 standards)
- FAA needs to better understand the STPA model with respect to accident causes, tool analysis and safety constraints
- Need to determine how the STPA process could be used in combination with other FAA guidance material
- Would need to obtain consensus with industry and international Civil Aviation Authorities in the use of STPA
- Recommendations include implementation of STPA on a pilot certification project for fact finding purposes
Questions & Wrap-Up

- Send your questions to me at:
 - peter.skaves@faa.gov
 - Telephone (425) 917-6700

- Thank you for your assistance !!!