CAST Analysis on Medical Diagnostic Device

Vincent Balgos MIT System Design & Management Alumni (2010)

Thesis: "A Systems Theoretic Application to Design for the Safety of Medical Devices"

Agenda

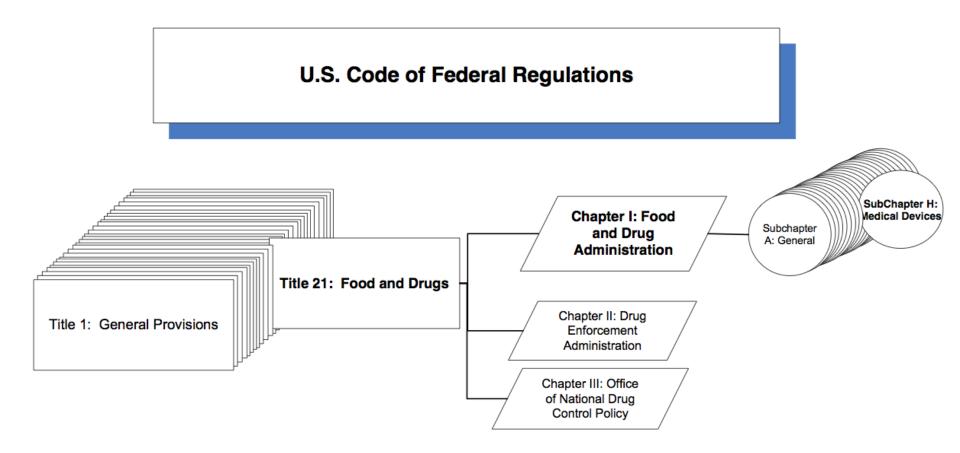
- Current Healthcare trends and Thesis question
- U.S. Regulatory Environment & Current Risk techniques
- Case System and Accident
- Control Structure
- CAST Analysis
- FMECA gap Analysis
- Conclusions

Current Trend

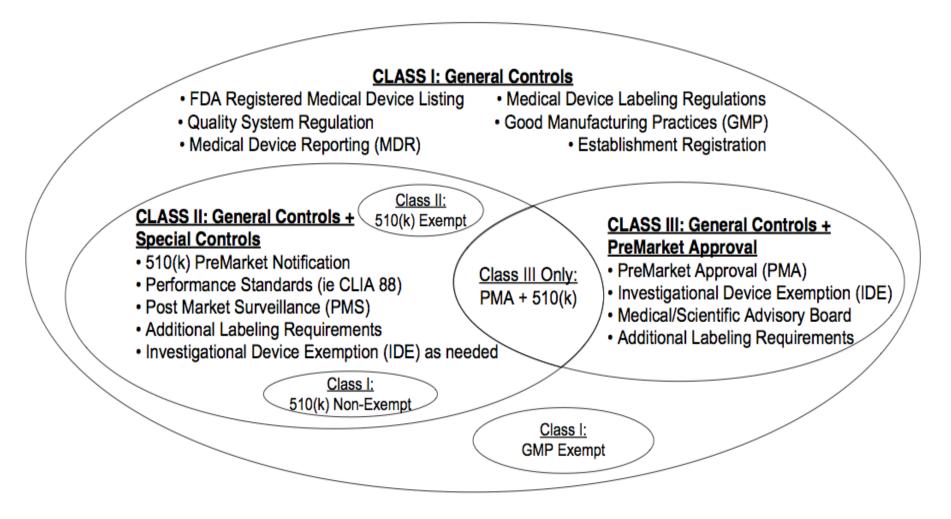
- US spends most in the world on healthcare – \$2.5 Trillion (~17% of US GDP)
- US ranks 37th in overall quality of healthcare
 2000 World Health Organization report
- Approximately 98,000 annual US deaths due to medical errors; increasing injuries and accidents due to medical devices
- Safety is one of main elements for improving healthcare system

Thesis Question

"Is the Systems Theoretic Accident Model and Process (STAMP) approach more effective in designing safety into the medical diagnostic systems than the current industry standard practices?"



US Regulatory Environment


US Food and Drug Administration (FDA) responsibility:

- Protecting the public health by assuring that foods are safe, wholesome, sanitary, and properly labeled; human and veterinary drugs, and vaccines and other biological products and medical devices intended for human use are *safe and effective*.
- Annually regulate over \$1 trillion worth of products

SubChapter H: Medical Devices Parts		
Part 800 - GENERAL	Part 866 - IMMUNOLOGY AND MICROBIOLOGY DEVICES	
Part 801 - LABELING	Part 868 - ANESTHESIOLOGY DEVICES	
Part 803 - MEDICAL DEVICE REPORTING	Part 870 - CARDIOVASCULAR DEVICES	
Part 806 - MEDICAL DEVICES; REPORTS OF CORRECTIONS AND REMOVALS	Part 872 - DENTAL DEVICES	
Part 807 - ESTABLISHMENT REGISTRATION AND DEVICE LISTING FOR MANUFACTURERS AND INITIAL IMPORTERS OF DEVICES	Part 874 - EAR, NOSE, AND THROAT DEVICES	
Part 808 - EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS	Part 876 - GASTROENTEROLOGY-UROLOGY DEVICES	
Part 809 - IN VITRO DIAGNOSTIC PRODUCTS FOR HUMAN USE	Part 878 - GENERAL AND PLASTIC SURGERY DEVICES	
Part 810 - MEDICAL DEVICE RECALL AUTHORITY	Part 880 - GENERAL HOSPITAL AND PERSONAL USE DEVICES	
Part 812 - INVESTIGATIONAL DEVICE EXEMPTIONS	Part 882 - NEUROLOGICAL DEVICES	
Part 814 - PREMARKET APPROVAL OF MEDICAL DEVICES	Part 884 - OBSTETRICAL AND GYNECOLOGICAL DEVICES	
Part 820 - QUALITY SYSTEM REGULATION	Part 886 - OPHTHALMIC DEVICES	
Part 821 - MEDICAL DEVICE TRACKING REQUIREMENTS	Part 888 - ORTHOPEDIC DEVICES	
Part 822 - POSTMARKET SURVEILLANCE	Part 890 - PHYSICAL MEDICINE DEVICES	
Part 860 - MEDICAL DEVICE CLASSIFICATION PROCEDURES	Part 892 - RADIOLOGY DEVICES	
Part 861 - PROCEDURES FOR PERFORMANCE STANDARDS DEVELOPMENT	Part 895 - BANNED DEVICES	
Part 862 - CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES	Part 898 - PERFORMANCE STANDARD FOR ELECTRODE LEAD WIRES AND PATIENT CABLES	
Part 864 - HEMATOLOGY AND PATHOLOGY DEVICES		

US Medical Device Classes

Current Risk Management

"Design validation shall include software and risk analysis, where appropriate"

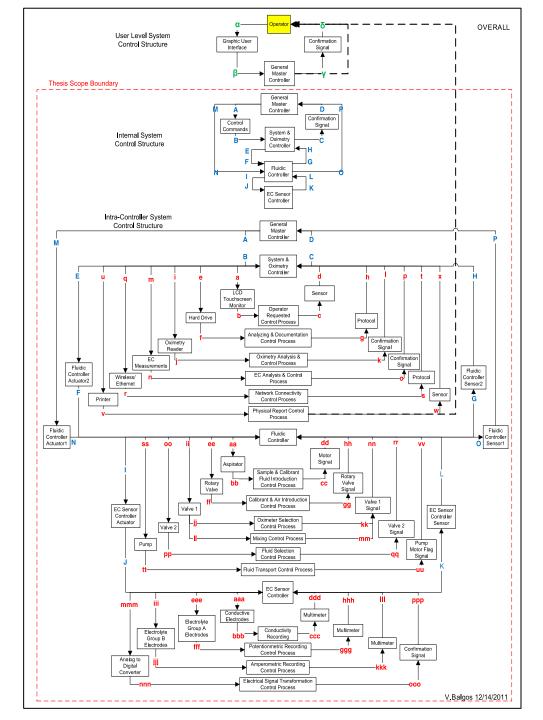
- 21 CFR 820.30(g) Revised as of April 1, 2011.

- ISO 14971: 5 Recommended Risk Analysis
 - Preliminary Hazard Analysis (PHA
 - Fault Tree Analysis (FTA)
 - Failure Mode and Effices Alalysis (FMEA)
 - Hazard and Operal lity Study (HAZOP)
 - Hazard Anarysis and Entical Control Points (HACCP)

Case System

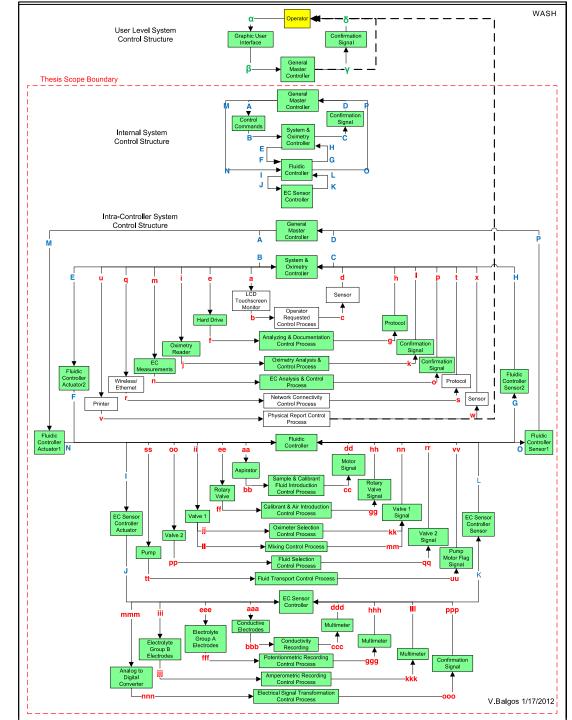
- Case system is point of care (POC) blood diagnostic analyzer for blood gas, metabolites, and other constituents
 - Key Performance Features
 - Precise and accurate blood diagnostic results
 - Fast turn-around-time (TAT) for results
 - High uptime and reliability
- Case company was dutiful in performing all required regulatory requirements
 - FDA supported Substantial Equivalence \rightarrow US Market
 - CE Mark approved \rightarrow EU Market

Case Accident


- FDA recall issued for case system
 - Specific reportable assay that reported erroneously low levels to medical staff that resulted in adverse event
- Example of adverse event
 - Medical staff uses the case system to diagnose the patient.
 - Medical staff performed standard medical procedure on patient based off suspected low result.
 - Patient reacted adversely, and may result in seizure, cardiac arrhythmia, or death.
 - Subsequent testing of the same patient sample on an external reference system verified normal electrolyte levels.

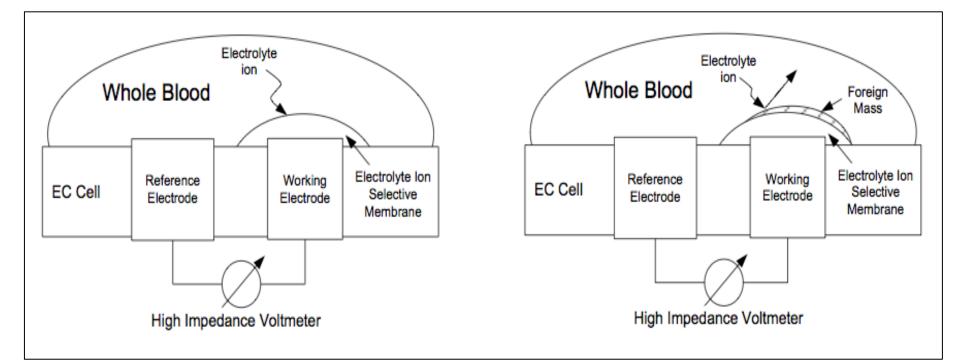
CAST Hazard Definition

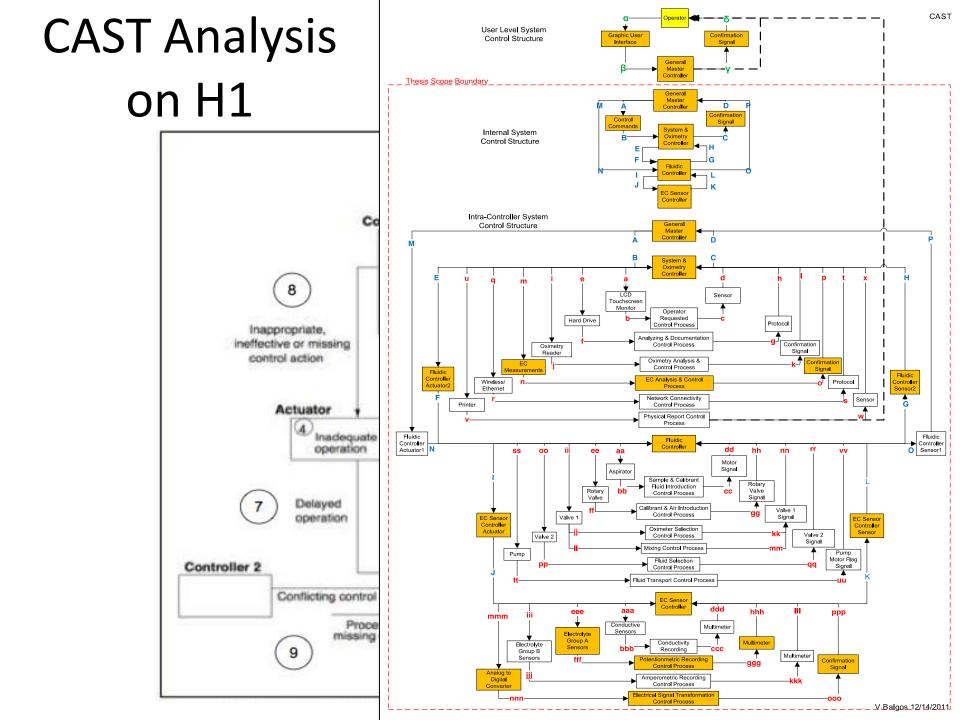
Hazards	Safety Constraints	Safety Requirements
erroneous patients	SC1: Accurate patient results must be reported to the medical staff.	SR1: The system shall report accurate patient results within an acceptable total allowable error as defined by CLIA 88
H2: The system reports	SC2: Patient results must be reported to the medical staff in a useable timeframe.	SR2: The system shall have a patient result report turn- around-time of X.
use due to premature	SC3: The system should be available for intended use as designed.	SR3: The system shall have a minimal cartridge uptime of X% during its use life.


Safety Control Structure

- Technical System
- Start with User loop
- Decompose into 3 lower controlled process
- Each loop was further developed

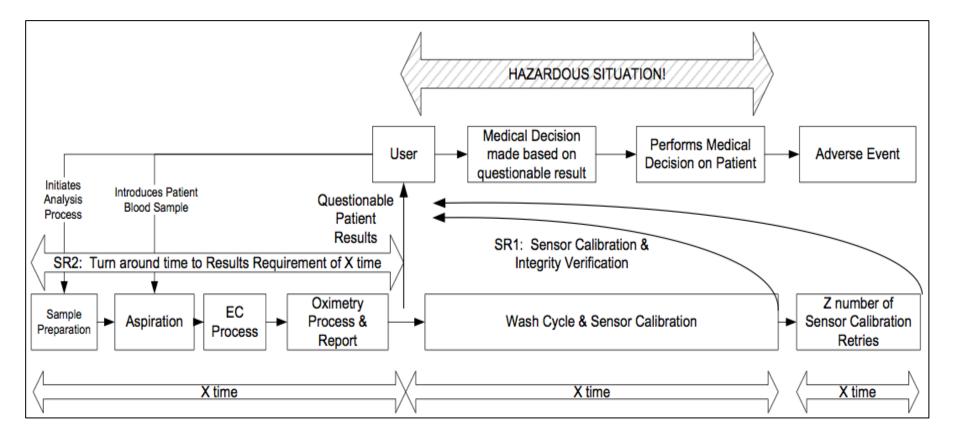
Safety Control Structure


- 20+ Control Loops
- Used highlight to emphasize which control loops are use for specific process
 - Sample Preparation Sample Aspiration EC Sample Oximetry & Report Wash & Calibration


Proximal Chain of Events

- 1. Patient is prescribed by physician(s) to be observed by diagnostic testing. Medical staff performs testing on the patient.
- 2. The case system performs patient sample analysis and reports an erroneous low electrolyte result, indicating a potential threatening <u>hypo</u>-electrolytic condition. There is no immediate error message.
- 3. Medical staff quickly reacts to low electrolyte result with medical intervention to increase the believed low level to normal levels.
- 4. Since the patient actually has normal level, the sudden increase in electrolytes raises the level beyond normal and induces a <u>hyper</u>-electrolytic condition. Patient then may undergo cardiac arrhythmia, epileptic seizure and/or death.
- Post accident investigation confirmed that the case system reported erroneously low electrolyte results when compared to a laboratory reference system.

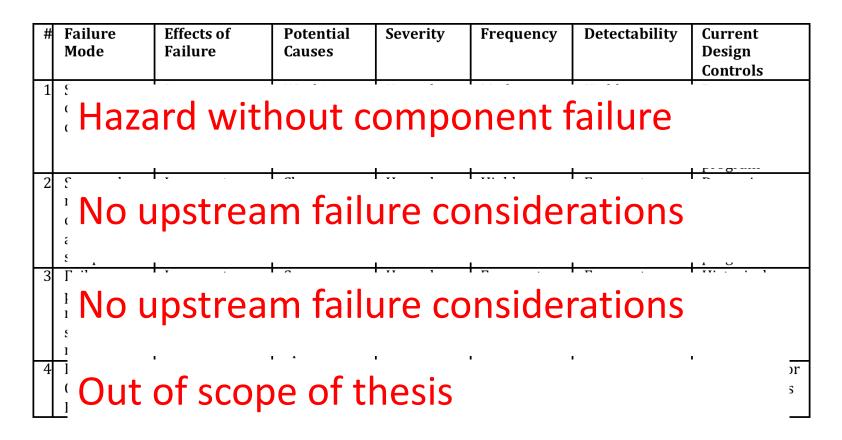
Analysis of Loss at Physical System


Significant finding, but does not explain how the fault migrated the system to an unsafe state.

CAST Results

- Identified 175+ causes of hazards in 6 control loops
 - Nine causes of hazards directly related to case accident
 - Generalized into 3 categories:
 - 1. The EC sensor could not immediately detect the presence of a foreign material on the sensor surface.
 - 2. Inadequate control of verifying abnormal potentiometric results at lower control level (Loop eee-fff-ggg-hhh).
 - 3. Higher GMC constraint of reporting patient report before lower level control loop could verify sensor integrity.

Conflict of Constraints



New Safety Design Requirements

#	General Hazard Identified by CAST	New System Design Requirement
1	The EC sensor could not detect the	The system shall be able to detect the
	presence of a foreign material on the	presence of foreign material on the
	sensor surface.	sensor surface with X% confidence
		level.
2	Inadequate control of verifying	The system shall verify all
	abnormal potentiometric results at	potentiometric results for deviance
	lower level.	at lower control levels in addition to
		the SOC.
3	Higher GMC constraint of reporting	The system shall allow the sensor
	patient report before lower level control	integrity verification in the wash
	loop could verify sensor integrity.	cycle to complete before patient
		results are reported to the user.

FMECA vs CAST Gap Analysis

- Initial FMECA analysis identified ~70 causes of hazards
 - 4 causes hazards related to case accident

FMECA vs CAST Gap Analysis

FMECA Results

- 70+ causes of hazards
- Team of Experts
- Extended Time dedication (Months/Years)
- Identified only single fault cause of hazards

CAST Results

- 175+ causes of hazards found (limited)
- Single Semi-Expert (Author)
- Shorter Time dedication (Weeks/Month)
- Identified complex causes of hazards, multiple failures, and no component failure that lead to a hazard.

Conclusion

 Case company was dutiful in performing the industry standard FMECA risk analysis

- However, case accident still occurred

- CAST identified hazards in Control Structure
 - Quantity: Voluminous findings
 - Quality: Complex, multiple, and no component failure
- CAST findings could have prevented case accident with a systems approach

Conclusion to Thesis

"Is the Systems Theoretic Accident Model and Process (STAMP) approach more effective in designing safety into the medical diagnostic systems than the current industry standard practices?"

Thank you to Dr. Qi Hommes & Prof Leveson!

Questions?

Contact: Email: vbalgos@sloan.mit.edu LinkedIn