Applying STPA to the Artificial Pancreas for People with Type 1 Diabetes

Lane Desborough

Product Strategist Medtronic Diabetes Northridge, California

• Type 1 Diabetes

- Artificial Pancreas
- Challenges
- Applying STPA

Type 1 Diabetes is a Huge Burden

www.diabetesartday.com

Carbohydrates and Exercise

Control / Effort / Flexibility: Pick up to Two

Glucose Control

- Acute dangers
- Chronic complications

Lifestyle Flexibility

- Food, exercise, sleep
- Time, type, place, amount

Therapy Effort

- Carb counting, pre-meal bolusing
- Bolus / basal adjustment
- Therapy compliance
- Experimentation, problem solving, collaboration, learning

Living with Diabetes: Hayden Desborough

http://www.youtube.com/watch?v=478Vr81rws0&feature=player_embedded

Company Confidential

- Type 1 Diabetes
- Artificial Pancreas
- Challenges
- Applying STPA

Artificial Pancreas

Artificial Pancreas: safely transfer variation from blood glucose to insulin in order to make living with diabetes easier

© 2012 Medtronic, Inc.

- Type 1 Diabetes
- Artificial Pancreas
- Challenges
- Applying STPA

1. There are many <u>sources</u> of variation

Timing		Events
Every 3-7 years	1.	Complications
Every or years	2.	Physiological changes
Every year	3.	Serious events
	4.	Illness stress
Every quarter	5.	Travel / time zone changes
_	6.	Psychological stress
Every week	7.	Missed meals
Every 2 days	8.	Restaurant meals
Every 3 days	9.	Hormonal stress
Every meal ¹	10.	Psychological stress
	11.	Circadian rhythms
Every hour	12.	Exercise stress
	13.	Normal meals
Every minute	14.	Movement

2. There is a limit to how much variation <u>can</u> be transferred

3. There isn't consensus on <u>which</u> variation to transfer (which loss function to use)

4. There is a limit to how much variation <u>should</u> be transferred

"Blink"

Humans are good at: "Recognition"

- Pattern recognition
- Troubleshooting
- New situations

"Think"

Computers are good at: "Cognition"

- Vigilance / repetitive tasks
- Fast response to defined situations
- Automated procedures

Improper task allocation between the human and the artificial pancreas may result in: High cognitive load from supervisory task
Automation-induced complacency
Brittleness (opposite of resiliency)
Mistrust of automation
Erosion of expertise and engagement

5. There are challenges in Sensing, Deciding, and Acting

Sense: My actual blood glucose...may not be what I'm sensing

Sensor Site	Sensor	Transmitter	Calibration	Sensor Value
Compressed, —	Pulled out, Old, Noisy,	 Dead battery,	Outdated strips,	Inaccurate, Missing,
Fatigued, Slow	Disconnected, Drifting,	Wireless blocked,	Contaminated	Deadtime, Lag,
Dynamics	Biased, Non-linear	Wireless spoofed	fingers, Missed	Dead battery,

Decide: The right amount of insulin ...may be unknownExternal disturbances (meals, exercise, stress, illness) – future or unmeasuredPhysiological variations (hourly / daily / monthly / yearly) – changing or unmeasured

Act: The insulin dose I want... may not be what I get Infusion Set Insulin Infusion Site Pump Occlusion, Cold, → Wrong bolus type, Compressed, Fatigued, Wrong kind, Slow Disconnected, acting, Degraded (old, Wrong bolus amount, Intramuscular, intravenous, Air-in-line fried), Air entrained **Dead battery** Pulled-out, Slow Dynamics

6. Great care must be taken when introducing feedback into hazardous software-intensive sociotechnical systems

Hazards + Humans + Software + Feedback

7. It's hard to control a multi-input, multioutput system with a single-input, singleoutput controller

Inputs

(things which affect the outputs)

		glucagon	amylin	carbohydrates	hydration	insulin	activity	illness	stress	sleep
S	body weight									
put	blood glucose									
Outputs	cholesterol									
	triglycerides									

8. Diabetes: anybody, anywhere, anytime

Attribute	Priority	Domain	Ran	ge	Notes	Implication	Allocation
Alertness	high	cockpit control room diabetes	Asleep / Coma	Alert	Tasks associated with diabetes are 24x7, whereas other domains even if they involve shift work - do not involve sleep	,	Allocate tasks to automation when person is not alert
Attention	high	cockpit control room diabetes	Tertiary / Distracted	Primary / Focused	Tasks associated with diabetes are predominantly secondary (the primary task is "getting on with life"), whereas in other domains the tasks are primary tasks	Cannot assume they are focused	Allocate tasks to automation when person is distracte
Choice	low	cockpit control room diabetes	Involuntary	Desired	The person with diabetes did not choose and does not want the tasks	Cannot assume they want to perform tasks	Allocate tasks to automation which they aren't motivated to perform
Complexity	high	cockpit control room diabetes	Easy	Hard	The tasks associated with diabetes vary greatly in cognitive complexity and memory recall	Cannot assume the tasks are easy / heterogeneous	Allocate simple tasks to automatio
Confidence	low	cockpit control room diabetes	Insecure	Confident	People with diabetes range have a great range of self-confidence	Cannot assume they are self-confident	Allocate tasks in such a way as to build confidence
Consequence	medium	cockpit control room diabetes	Inconsequential	Life-or-Death	Consequences of incorrect actions range from inconsequential to life-threatening	Cannot assume tasks are inconsequential	Allocate to automation only low consequence tasks, unless task is very certain
Experience	medium	cockpit control room diabetes	Inexperience	Decades		Cannot assume they are experienced	Allocate tasks to automation withou de-skilling

^{© 2012} Medtronic. Inc.

- Type 1 Diabetes
- Artificial Pancreas
- Challenges
- Applying STPA

Start with Principles

Governance Principles

- 1. We make problems visible
- 2. We understand customer value
- 3. We go slow to go fast
- 4. We collaborate to succeed
- 5. We deliver value frequently
- 6. We continuously learn and capture knowledge
- 7. We manage change

Design Principles

- 1. We design for dependability
- 2. We design for simplicity
- 3. We design for uncertainty
- 4. We design for human behavior
- 5. We design for proper task allocation
- 6. We design for automation supervision
- 7. We design for automation transparency

Principles Drive Methods

- Lean Development
- Safety Driven Design
- Data Mining
- Modeling-Based Development
- Clinical Trials

Goal: Commercialize a next generation artificial pancreas which is:

- 1. Less burdensome
- 2. More effective
- 3. Safe

Quantifying Burden

Burden = f(Overload, Vigilance, Cognitive lock-up)

Accidents

Accidents, or Loss Events, are those things that *must not* happen in efforts to satisfy system goals.

Example: ACC.1 Acute incident of hypoglycemia ACC.2 Acute incident of hyperglycemia ACC.3 Chronic hyperglycemia ACC.4 Patient ceases effective therapy

Inadequate Control Actions (ICA's)

Model-Based Development fosters STPA

1.

Unsafe control commands

^{© 2012} Medtronic. Inc.

Example Result

- **100 virtual subjects**
- x 2 trials per subject
- x 7 days per trial
- x 2206 experiments / subject
- = 3 million subject-days

Safety, Efficacy, Burden – Trade Analysis

© 2012 Medtronic. Inc.

Executable Specification / Model-Based Development

[B]

Requirements Specification

VERSION: 1.0

REVISION DATE: 02/24/2012

Summary

- 1. Diabetes control is complex
- 2. Artificial Pancreas is a series of steps
- 3. Diabetes is a perfect fit for STPA
- 4. We have started the journey

Lane.Desborough @Medtronic.com