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Preface

This handbook is intended to assist those who want to start using STPA or who want to try using it for
more than simple hazard analysis. As such, we tried to provide examples and have included more
examples in the appendices. An appendix is also provided to explain some basic engineering concepts
needed to understand and use the handbook to those who are not trained in engineering. Other new
concepts are introduced in the main chapters of the handbook itself.

The introduction provides a brief introduction to STAMP, the accident causality model underlying
STPA. It also shows examples accidents and explains why STPA is needed for today’s complex, software-
intensive systems.

The next chapter is an in-depth tutorial on how to perform STPA. It will be useful for the beginner as
well as for those who have tried STPA and want to improve their results.

The rest of the handbook describes uses for STPA, including how to integrate it into a standard
system engineering process, its use in workplace safety, using STPA for organizational analysis and
emergent system properties other than safety, using STPA to provide leading indicators of increasing
risk, designing an effective safety management system, and cyber security.

The final chapter describes what we have learned about integrating STPA into a large organization
and how to structure the STPA process to make it most effective but also least disruptive to the
enterprise.

Our goal in writing this handbook is to provide a guide for those who are actually using STPA rather
than writing an academic primer. Therefore, we have omitted references to other work, etc. There are
many other sources that provide this type of information but few that focus on instruction and ways to
use STPA. To find many examples, published papers, theses, etc., see http://psas.scripts.mit.edu/home/

We encourage users of the handbook to work on examples relevant to their industry as they go
through the handbook.



Chapter 1: Introduction
Nancy Leveson

STPA (System-Theoretic Process Analysis) is a relatively new hazard analysis technique based on an
extended model of accident causation. In addition to component failures, STPA assumes that accidents
can also be caused by unsafe interactions of system components, none of which may have failed. Some
of the advantages of STPA over traditional hazard/risk analysis techniques are that:

e Very complex systems can be analyzed. “Unknown unknowns” that were previously only found
in operations can be identified early in the development process and either eliminated or
mitigated. Both intended and unintended functionality are handled.

e Unlike the traditional hazard analysis methods, STPA can be started in early concept analysis to
assist in identifying safety requirements and constraints. These can then be used to design
safety (and security) into the system architecture and design, eliminating the costly rework
involved when design flaws are identified late in development or during operations. As the
design is refined and more detailed design decisions are made, the STPA analysis is also refined
to help make more and more detailed design decisions. Complete traceability from
requirements to all system artifacts can be easily maintained, enhancing system maintainability
and evolution.

e STPA includes software and human operators in the analysis, ensuring that the hazard analysis
includes all potential causal factors in losses.

e STPA provides documentation of system functionality that is often missing or difficult to find in
large, complex systems.

e STPA can be easily integrated into your system engineering process and into model-based
system engineering.

Many evaluations and comparisons of STPA to more traditional hazard analysis methods, such as
fault tree analysis (FTA), failure modes and effects criticality analysis (FMECA), event tree analysis (ETA),
and hazard and operability analysis (HAZOP) have been done.! In all of these evaluations, STPA found all
the causal scenarios found by the more traditional analyses but it also identified many more, often
software-related and non-failure, scenarios that the traditional methods did not find. In some cases,
where there had been an accident that the analysts had not been told about, only STPA found the cause
of the accident. In addition, STPA turned out to be much less costly in terms of time and resources than
the traditional methods.

Theoretical Foundation

To use STPA requires little understanding of the underlying theoretical, mathematical foundation,
but an intuitive understanding is helpful. If this topic does not interest you, we suggest you skip to the
next section.

STPA is based on System Theory. Systems theory was developed after World War Il to cope with the
increasingly complex systems with advanced technology that were being created. First, it is important to
understand what it was replacing.

! Information about some of these were presented at past MIT STAMP/STPA workshops. Presentations can be
found at http://psas.scripts.mit.edu/home/



Analytical Decomposition (the traditional approach)

For centuries complexity has been handled by breaking the system into smaller components,
examining and analyzing each component in isolation, and then combining the results in order to
understand the behavior of the composed components.

The physical or functional components are broken into distinct components that are assumed to
interact in direct and known ways. The functional components of an aircraft, for example, might be
propulsion, navigation, attitude control, braking, cabin environment control, and so on. Aircraft may also
be decomposed into physical components, such as fuselage, engines, wings, stabilizers, nozzles, and so
on. Notice that mappings may be made between the functional components and the physical ones but
the mappings are assumed to be direct and known.

Behavior, in contrast, is traditionally modeled as separate events over time, where each event is the
direct result of the preceding event(s). There may be multiple preceding or following events combined
through the use of AND/OR logic but that simply results in multiple chains (with the AND/OR logic used
to reduce the number of separate chains needing to be specified by putting them together into trees).

Chain of Events
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The events may be grouped into operational stages such as for aircraft, pushback, taxi, take off,
climb, cruise, approach, and touchdown.

Once the system has been broken into components (pieces), the components are analyzed
separately and the results of the separate analyses are combined to create a system analysis. For
example, if the weight of an complex object is the analysis goal, the separate pieces may be weighed
and the result combined to get the system weight. As another common example, the system reliability is
usually evaluated by evaluating the reliability of the individual components and then the component
reliabilities are combined mathematically to evaluate the system reliability.

The success of this type of decompositional or reductionist approach relies on the assumption that
the separation and individual analysis does not distort the phenomenon or property of interest. More
specifically, the approach works if:



e Each component or subsystem operates independently. If events are modeled, then they are
independent except for the immediately preceding and following events.

e Components act the same when examined separately (singly) as when they are playing their
part in the whole.

e Components and events are not subject to feedback loops and other indirect interactions.

e The interactions among the components or events can be examined pairwise and combined into
a composite value.

If these assumptions are not true, then the simple composition of the separate analyses will not
accurately reflect the system value.

Why is all of this important? Because traditional hazard analysis is based on decomposition and
therefore on these assumptions. The basic approach involved is to divide the system into components,
assume that accidents are caused by component failure, calculate the probability of failure of each
component separately, and later combine the analysis results (based on assumptions about the types of
interactions among components that can occur) into a system reliability figure, which is assumed to be a
measure of safety or risk. Examples are Failure Modes and Effects Analysis (FMEA) and Failure Modes
and Effects Criticality Analysis. The latter considers only failures that can lead to a critical loss rather
than all failures.

Alternatively, chains of directly related physical or logical (functional) failure events that can lead to a
loss are identified and the probability of each is combined into a probability of the event chain
occurring. The following is a chain of events example for a tank explosion.

Equipment
Operating damaged
pressure
o )
Moisture | ,|Corrosion| | Weakened_ Tank L) Fragments Rersonnel
metal rupture projected injured

In this example, moisture gets into the tank, causing corrosion. The corrosion leads to weakened
metal, which, along with a particular operating pressure, can cause the tank to rupture. As a result,
fragments are projected and equipment is damaged or personnel are injured.

If accidents are assumed to be caused by failure events, then it makes sense that the approach to
preventing accidents is to eliminate the events or to put barriers between the events so that one failure
does not cause another event down the chain. The tank rupture model of events is annotated below
with the typical types of accident prevention design techniques used, including redundancy, barriers,
high component integrity and overdesign, fail safe design, and, for humans, the use of operational
procedures, checklists, and training. These design features are used to reduce the probability of the
failure events occurring or of them propagating.
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to keep moisture steel or coatof  thickness so to rupture before tank  screen to contain vicinity of tank while
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steel to prevent  reduce strength to extensive damage
contact with failure point during and fragmentation.
moisture. foreseeable lifetime.

The failure events, of course, must be assumed to be stochastic? for probabilities or likelihood to be
determined. Unfortunately, software and humans do not satisfy this assumption. This second, event-
chain approach to hazard analysis is the basis for fault tree analysis (FTA), event tree analysis (ETA), fault
hazard analysis (FHA), and hazard and operability analysis (HAZOP, which uses a deviation rather than a
failure as the event or condition to be considered).

The assumptions underlying the decompositional approach to traditional hazard analysis are true (or
close enough) for the type of electromechanical systems we used to build, and they are still true for
certain properties in our new high-tech, software-intensive systems. However, the greatly increased
complexity in our systems today (which is made possible primarily by the use of software) is creating
systems where the approach is no longer as effective. It is much more difficult today to anticipate,
understand, plan, and guard against all potential system behavior before operational use of our systems.
Complexity is creating “unknowns” that cannot be identified by breaking the system behavior into
chains of events. In addition, complexity is leading to important system properties (such as safety) not
being related to the behavior of individual system components but rather to the interactions among the
components. Accidents can occur due to unsafe interactions among components that have not failed
and, in fact, satisfy their requirements.

Some examples may be helpful.

Some Navy aircraft were ferrying missiles from one point to another.
One pilot executed a planned test by aiming at the aircraft in front (as
he had been told to do) and firing a dummy missile. Apparently nobody
knew that the “smart” software was designed to substitute a different
missile if the one that was commanded to be fired was not in a good
position. In this case, there was an antenna between the dummy
missile and the target, so the software decided to fire a live missile
located in a different (better) position instead. What aircraft
component(s) failed here?

2 Something is stochastic if it can be described by a probability distribution or pattern that may be analyzed
statistically to understand average behavior or an expected range of behavior but may not be predicted precisely
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This loss involved the Mars Polar Lander. It is necessary to slow
b the spacecraft down to land safely. Ways to do this include using
Heat-shield jettison the Martian atmosphere, a parachute and descent engines

7,500 meters

(controlled by software). As soon as the spacecraft lands, the
software must immediately shut down the descent engines to
avoid damage to the spacecraft. Some very sensitive sensors on
the landing legs provide this information. But it turned out that
noise (false sensor signals) are generated when the legs are
deployed. This expected behavior was not in the software
requirements. Perhaps it was not included because the software
was not supposed to be operating at this time, but the software
engineers decided to start early to even out the load on the
processor. The software thought the spacecraft had landed and
shut down the descent engines while the spacecraft was still 40
meters about the planet surface. Which spacecraft components
failed here?

12005 Sky & Telescope
b

It is dangerous for an aircraft’s thrust reversers (which
are used to slow the aircraft after it has touched
down) to be activated when the aircraft is still in the
air. Protection is designed into the software to prevent
a human pilot from erroneously activating the thrust

i reversers when the aircraft is not on the ground.

~ Without going into the details, some of the clues for
the software to determine the plane has landed are
weight on wheels and wheel spinning rate, which for a
variety of reasons did not hold in this case. For
example, the runway was very wet and the wheels
hydroplaned. As a result, the pilots could not activate
the thrust reversers and the aircraft ran off the end of
the runway into a small hill. What aircraft components
failed here?




1272072012 04.35.14 This accident involved a Tupelov aircraft landing in Moscow in
2012. A soft touchdown made runway contact a little later
than usual. With the crosswind at the time, the weight-on-
wheels switches did not activate and the thrust reverse
system would not deploy. The pilots thought that the thrust
reversers would deploy as they always do. So with limited
runway space to stop the aircraft, they quickly engaged high
engine power to stop quicker. Instead, this accelerated the
aircraft forward, eventually colliding with a highway
embankment. What aircraft components failed here?

The coastal area of Washington state has lots of
water and islands. Car ferries are necessary to move
people around. One day, the ferry system was
brought to its knees when rental cars could not be
driven off the ferries after arriving in port. It turned
out that a local rental car company had installed a
security device to prevent theft by disabling cars if
the car moved when the engine was stopped. When
the ferries moved and the cars were not running, the
cars all disabled themselves and the ferry system was
brought to a standstill until enough tow trucks could
be found to tow the cars off the ferries. What car
component(s) failed here?

5
N

[ J629. T The manufacturer of the lithium-ion batteries involved
- in this incident determined that battery cell venting
would occur once in 10 million flight hours, but two
batteries malfunctioned in just two weeks in 2013.
While there were many factors involved, one of the
factors makes an interesting example here. In the
event of a battery malfunction, an environmental
control system was designed to remove smoke
through cooling duct fans by actuating certain valves.
However, the unit providing power to the
environmental control system simultaneously shut
down due to the battery malfunction. As a result, the
valves could not be actuated and smoke being
generated by the APU battery could not be effectively
directed outside the passenger cabin and battery
compartment.




A more complex example in aircraft avionics systems can be found in Appendix A. In addition, Dr.
loana Koglbauer at the University of Graz (Austria) provided an example that emphasizes the usefulness
of a systems approach. A certified fixed-base flight simulator at their university has the same production
cockpit components (e.g. rudder-pedals) as the certified aircraft, but the pedals in the simulator often
break and must be replaced. If you try to understand why and solve the problem at the component
level, you could blame and punish the pilot who produced the damage, train the pilot on how to handle
the simulator, or invest in improving the pedals. If you look at interactions among components (people,
hardware, software), and try to understand why the pilots use the pedals differently in the simulator
than in a real aircraft , you come to a different problem definition and solution. It turns out that when
the pilots brake in the simulator, the simulator software is not programmed to show the typical small
pitch down movement when the aircraft comes to a stop. This movement can also be felt when parking
a car. In the absence of this feedback in the aircraft simulator, the pilots apply the brakes longer and
stronger than needed. For this reason, the pedals break in the simulator, but not in the real aircraft. The
best solution is to improve the software and give pilots the feedback they need.

In all of these cases (and in hundreds of others), the problems did not stem from individual
component failures but from flaws in the system engineering process that resulted in flawed system
designs. Decompositional analysis cannot identify these causes of accidents including human error,
software requirements errors, and system design flaws. We need something different. That different
theoretical foundation, which underlies STPA, is called System Theory.

System Theory

As stated above, system theory as used in engineering was created after World War Il to deal with
the increased complexity of the systems being built after the war.? It was also created for biology in
order to successfully understand the complexity of biological systems. In these systems, separation and
analysis of separate, interacting components (subsystems) distorts the results for the system as a whole
because the component behaviors are coupled in non-obvious ways. The first engineering uses of these
new ideas were in the missile and early warning systems of the 1950s and 1960s.

Some unique aspects of System Theory are:

e The system is treated as a whole, not as the sum of its parts. You have probably heard the
common statement: “the whole is more than the sum of its parts.”

e A primary concern is emergent properties, which are properties that are not in the summation of
the individual components but “emerge” when the components interact. Emergent properties
can only be treated adequately by taking into account all their technical and social aspects.

e Emergent properties arise from relationships among the parts of the system, that is, by how
they interact and fit together.

3 If you are interested in learning more, we recommend Peter Checkland, System Thinking, System Practice, John
Wiley & Sons (1981), Gerald Weinberg, An Introduction to General Systems Thinking, John Wiley & Sons (1975),
and perhaps for historical interest, W. Ross Ashby, An Introduction to Cybernetics, Chapman and Hall (1956).
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Emergent properties
(arise from complexinteractions)

The whole is greater than
the sum of its parts

System components interactin
direct andindirectways

If emergent properties arise from individual component behavior and from the interactions among
components, then it makes sense that controlling emergent properties, such as safety, security,
maintainability, and operability, requires controlling the behavior of the individual components and the
interactions among the components. We can add a controller to the figure. The controller provides
control actions on the system and gets feedback to determine the impact of the control actions. If this
looks like a standard feedback control loop to you, you are absolutely correct. That is what it is.

The controller enforces constraints on the behavior of the system. Example safety constraints might
be that aircraft or automobiles must remain a minimum distance apart, pressure in deep water wells
must be kept below a safe level, aircraft must maintain sufficient lift to remain airborne unless landing,
accidental detonation of weapons must be prevented, and toxic substances must never be released
from a plant.

Controller

Controlling emergent properties
(e.qg., enforcing safety constraints)

— Individual component behavior
— Componentinteractions

Feedback

System components interactin
direct andindirectways

To explain the model above using a simple example, consider the national or international airspace. If
each airline were allowed to optimize its schedule by flying at any time and using any route, chaos might
result if everyone tried to land at Chicago, New York, or Heathrow at 5 pm. To avoid such conflicts, system-
level air traffic control (ATC) is introduced that controls two emergent properties: throughput and safety.
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ATC is responsible for optimizing the overall throughput in the system (which may not optimize the route
for every aircraft) and for maintaining adequate separation among the aircraft.

This model includes everything we now do in safety engineering. Control is interpreted broadly. For
example, component failures and unsafe interactions may be controlled through design, such as using
redundancy, interlocks, barriers, or fail-safe design. Safety may also be controlled through process, such
as development processes, manufacturing processes and procedures, maintenance processes, and
general system operating processes. Finally, safety may be controlled using social controls including
government regulation, culture, insurance, law and the courts, or individual self-interest. Human behavior
can be partially controlled through the design of the societal or organizational incentive structure.

What is STAMP?

STAMP* (System-Theoretic Accident Model and Processes) is the name of the new accident causality
model based on systems theory,® as described in the previous section, which provides the theoretical
foundation for STPA. It expands the traditional model of causality beyond a chain of directly-related failure
events or component failures to include more complex processes and unsafe interactions among system
components, and it underlies STPA and other tools.

In STAMP, safety is treated as a dynamic control problem rather than a failure prevention problem.
No causes are omitted from the STAMP model, but more are included and the emphasis changes from
preventing failures to enforcing constraints on system behavior.

Some advantages of using STAMP are that:

e It works on very complex systems because it works top-down rather than bottom up.

e |tincludes software, humans, organizations, safety culture, etc. as causal factors in accidents
and other types of losses without having to treat them differently or separately.

e It allows creating more powerful tools, such as STPA, accident analysis (CAST), identification and
management of leading indicators of increasing risk, organizational risk analysis, etc.

Because STAMP applies to any emergent property, STPA can be used for any system property,
including cybersecurity.

STAMP is not an analysis method. Instead it is a model or set of assumptions about how accidents
occur. STAMP is an alternative to the chain-of-failure-events (or dominos or Swiss cheese slices, all of
which are essentially equivalent) that underlies the traditional safety analysis techniques (such as Fault
Tree Analysis, Event Tree Analysis, HAZOP, FMECA, and HFACS). Just as the traditional analysis methods
are constructed on the assumptions about why accidents occur in a chain-of-failure-events model, new
analysis methods can be constructed using STAMP as a basis. Note that because the chain-of-failure
events model is a subset of STAMP, tools built on STAMP can include as a subset all the results derived
using the older safety analysis techniques.

The two most widely used STAMP-based tools today are STPA (System Theoretic Process Analysis)

and CAST (Causal Analysis based on Systems Theory). STPA is a proactive analysis method that analyzes
the potential cause of accidents during development so that hazards can be eliminated or controlled.

4 Nancy G. Leveson, Engineering a Safer World, MIT Press (2012)

5> The basic system theory that underlies STAMP should not be confused with Complexity Theory, which later grew
out of basic system theory to explain the adaptive, non-linear behavior common in nature and social organizations.
For engineering, even the engineering or design of organizations, basic system theory suffices. For more, see
Appendix F.
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CAST is a retroactive analysis method that examines an accident/incident that has occurred and
identifies the causal factors that were involved. This handbook concentrates on the use of STPA. A
future, similar handbook is planned for CAST.

Organization of this Handbook

Chapter 2 of this handbook explains the basics of STPA and how to do it. An aerospace example is
used, but examples from other industries are included in the appendices.

Chapters 3 through 7 describe how to use STPA in various common types of engineering activities.
Because STPA can be applied to any emergent (system) property, Chapter 5 applies STPA to something
other than safety, in this case, system engineering effectiveness. While most of the applications of STPA
in industry so far have involved safety, companies are now starting to use it for other system properties
such as quality, security, and production engineering.

Finally, Chapter 8 provides some advice about how to integrate STPA into a large organization. The
appendices provide additional examples, a guide for analyzing an organizational safety management
system, some additional explanation (including an example) about why decomposition does not work
for today’s software-intensive, complex systems, and an introduction to some basic concepts for non-
engineers.
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Chapter 2: How to Do a Basic STPA Analysis
John Thomas

STPA Method Overview

The steps in basic STPA are shown in Figure 2.1 along with a graphical representation of these steps.

STPA
1) Define 2) Model 3) Identify 4) Identify
Purpose of =] the Control p= Unsafe Control = Loss
the Analysis Structure Actions Scenarios

Identify Losses, Hazards

1 |
Define L L
System —. Envi t —— ——
boundary N nvironmen T

! I
! I
I System

1

___JI_____

Figure 2.1: Overview of the basic STPA Method

Defining the purpose of the analysis is the first step with any analysis method. What kinds of losses
will the analysis aim to prevent? Will STPA be applied only to traditional safety goals like preventing loss
of human life or will it be applied more broadly to security, privacy, performance, and other system
properties? What is the system to be analyzed and what is the system boundary? These and other
fundamental questions are addressed during this step.

The second step is to build a model of the system called a control structure. A control structure
captures functional relationships and interactions by modeling the system as a set of feedback control
loops. The control structure usually begins at a very abstract level and is iteratively refined to capture
more detail about the system. This step does not change regardless of whether STPA is being applied to
safety, security, privacy, or other properties.

The third step is to analyze control actions in the control structure to examine how they could lead to
the losses defined in the first step. These unsafe control actions are used to create functional
requirements and constraints for the system. This step also does not change regardless of whether STPA
is being applied to safety, security, privacy, or other properties.

The fourth step identifies the reasons why unsafe control might occur in the system. Scenarios are
created to explain:

1. How incorrect feedback, inadequate requirements, design errors, component failures, and
other factors could cause unsafe control actions and ultimately lead to losses.

2. How safe control actions might be provided but not followed or executed properly, leading to a
loss.
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Once scenarios are identified, they can be used to create additional requirements, identify
mitigations, drive the architecture, make design recommendations and new design decisions (if STPA is
used during development), evaluate/revisit existing design decisions and identify gaps (if STPA is used
after the design is finished), define test cases and create test plans, develop leading indicators of risk,
and for other uses as described in later chapters of this handbook.

Defining the purpose of the analysis

STPA
1) Define 2) Model 3) Identify 4) ldentify
Purpose of = the Control = Unsafe Control p==p Loss
the Analysis Structure Actions Scenarios

1) Define Purpose of
the Analysis

Identify Losses, Hazards

Define
System Environment
boundary
T T T T
I I
1 System I
I I
a4

Figure 2.2: Defining the Purpose of the Analysis

As Figure 2.2 shows, the first step in applying STPA is to define the purpose of the analysis. Defining
the purpose of the analysis has four parts:
1. Identify losses
2. ldentify system-level hazards
3. Identify system-level constraints
4. Refine hazards (optional)
Figure 2.3 summarizes the four parts described in this section.
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hazards constraints
Sub-hazards,
N Refine constralnts:
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Figure 2.3: Overview of defining the analysis purpose

Identifying losses
Definition: A loss involves something of value to stakeholders. Losses may include a loss of
human life or human injury, property damage, environmental pollution, loss of mission, loss of
reputation, loss or leak of sensitive information, or any other loss that is unacceptable to the
stakeholders.

Different words are used to identify the goal of hazard analysis in different industries, for example,
preventing an accident, a mishap, or an adverse event. To eliminate confusion about multiple terms
used by practitioners in various industries, “losses” will be the term used in this chapter and the goal of
STPA is to prevent losses.

STPA can be used to target any loss that is unacceptable to stakeholders. If more than one loss is
included, they can be ranked and prioritized. Because every STPA result will be traceable to one or more
losses, the analysis results can be easily ranked and prioritized based on the losses to which they refer.

Before any analysis begins, the stakeholders must identify the losses on which they want the analysis
to focus. The losses to be considered may be defined by management, by government regulations, or by
customers. A general approach to identifying losses may involve:

1. Identify the stakeholders, e.g. Users, producers, customers, operators, etc.

2. Stakeholders identify their “stake” in the system. What do they value? For example, human life,
fleet of useable aircraft, electrical power generation, transportation, etc. What are their goals?
For example, to maintain a fleet of useable aircraft, to provide transportation, to provide
medical treatment, to provide electrical power generation, etc.

3. Translate each value or goal into a loss, e.g. loss of life, loss of aircraft, loss of electrical power
generation, loss of transportation, etc.

The following list provides some examples of losses that users of the analysis often want to avoid:

L-1: Loss of life or injury to people

L-2: Loss of or damage to vehicle

L-3: Loss of or damage to objects outside the vehicle

L-4: Loss of mission (e.g. transportation mission, surveillance mission, scientific mission,
defense mission, etc.)

L-5: Loss of customer satisfaction
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L-6: Loss of sensitive information
L-7: Environmental loss
L-8: Loss of power generation

Some tips to prevent common mistakes when identifying losses:

1. Losses can include any loss that is unacceptable to any stakeholder
2. Losses should not reference individual components or specific causes like “human error” and
“brake failure”
3. Losses may involve aspects of the environment that are not directly controlled by the system
designer
4. Document any special considerations or assumptions made, such as losses that are explicitly
excluded
After the losses of concern in the analysis are identified, the next step is to define the hazards related
to these losses.

Identifying system-level hazards

Definition: A hazard is a system state or set of conditions that, together with a particular set of
worst-case environmental conditions, will lead to a loss.

Definition: A system is a set of components that act together as a whole to achieve some
common goal, objective, or end. A system may contain subsystems and may also be part of a
larger system.

To identify the system-level hazards, you will first need to identify the system to be analyzed and the
system boundary. A system is an abstraction conceived by the analyst. A decision must be made about
what is included in the system and what the system boundary is. With respect to engineering, the most
useful way to define the system boundary for analysis purposes is to include the parts of the system
over which the system designers have some control. This is the primary reason for distinguishing
between hazards and losses—losses may involve aspects of the environment over which the system
designer or operator has only partial control or no control at all. The goal of safety engineering is to
eliminate or mitigate the effects of hazards in the system under analysis so some level of control is
necessary. Figure 2.4 illustrates the system boundary as an abstraction that separates a system from its
environment.

System Environment
boundary
System
System System
Outputs Inputs

Figure 2.4: The relationship between a system, system boundary, and the environment
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As an example, consider a nuclear power plant. A release of radioactive materials, the proximity of a
nearby population or city, and the direction of the wind may all be important factors that lead to a
potential loss of life. However, as engineers we cannot control the wind and we may not be able to
control the city location, but we can control the release of radioactive materials in or outside the plant
(a system-level hazard).

Once the system and system boundary is identified, the next step is to define the system-level

hazards by identifying system states or conditions that will lead to a loss in worst-case environmental
conditions. The following list provides some examples of system-level hazards:

H-1: Aircraft violate minimum separation standards in flight [L-1, L-2, L-4, L-5]

H-2: Aircraft airframe integrity is lost [L-1, L-2, L-4, L-5]

H-3: Aircraft leaves designated taxiway, runway, or apron on ground [L-1, L-2, L-5]

H-4: Aircraft comes too close to other objects on the ground [L-1, L-2, L-5]

H-5: Satellite is unable to collect scientific data [L-4]

H-6: Vehicle does not maintain safe distance from terrain and other obstacles [L-1, L-2, L-3, L-4]
H-7: UAV does not complete surveillance mission [L-4]

H-8: Nuclear power plant releases dangerous materials [L-1, L-4, L-7, L-8]

In general, a hazard can lead to one or more losses and each hazard should be traced to the resulting
losses. This traceability is typically documented in brackets after the hazard description. The examples
above show the traceability to the examples of losses on the previous page.

There are three basic criteria for defining system-level hazards:

- Hazards are system states or conditions (not component-level causes or environmental states)
- Hazards will lead to a loss in some worst-case environment
- Hazards must describe states or conditions to be prevented

First, the system-level hazards are system states or conditions, not external environmental states
that are outside the designer’s control. In addition, system-level hazards should not describe detailed
component-level causes like a physical component failure (e.g. a hydraulic leak, insufficient brake fluid,
etc.). Referencing component-level causes during this step will overly restrict the analysis, making it easy
to overlook other less obvious causes during later steps. Instead, identify the system-level states or
conditions to be prevented (the hazards) and allow the later STPA steps to systematically identify
component-level causes of the hazards.

Second, there must be a worst-case environment in which hazards will lead to a loss. This
requirement does not necessarily guarantee that a hazard will always result in a loss. For example, a
chemical plant may release toxic materials but wind and weather conditions prevent the toxic materials
from impacting nearby personnel and populated regions. However, in a worst-case environment, the
toxic materials can be carried to populated areas and lead to losses.

Finally, hazards are states or conditions to be prevented. “Aircraft in flight” is a system state that
could arguably lead to a loss in a worst-case environment, but it is not a condition to be eliminated or
prevented (otherwise we would not be building aircraft). Hazards should be states to be prevented and
states that we never want the system to get into—not states that the system must normally be in to
accomplish its goals.

Common mistakes when identifying system-level hazards

Confusing hazards with causes of hazards
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A common mistake in defining hazards is to confuse hazards with causes of hazards. For example,
“brake failure”, “brake failure not annunciated”, “operator is distracted”, “engine failure”, and
“hydraulic leak” are not system-level hazards but potential causes of hazards. To avoid this mistake,
make sure the identified hazards do not refer to individual components of the system, like brakes,
engines, hydraulic lines, etc. Instead, the hazards should refer to the overall system and system states.
In other words, check that each hazard contains:

<Hazard specification> = <System> & <Unsafe Condition> & <Link to Losses>
E.g. H-1 = Aircraft violate minimum separation standards in flight [L-1, L-2, L-4, L-5]

The exact sequence is not important—you could just as easily write “Minimum separation standards
for aircraft are violated [L-1, L-2, L-4, L-5]”. What is important is that the system-level hazards contain
these elements.

Too many hazards containing unnecessary detail

Like losses, there are no hard limits on the number of system-level hazards to include. As a rule of
thumb, if you have more than about seven to ten system-level hazards, consider grouping or combining
hazards to create a more manageable list. You may be including unnecessary detail and making the list
unmanageable, difficult to review, and harder to identify things that are missing. Instead, begin with a
more abstract and manageable set of system-level hazards and refine them into sub-hazards later if
needed (as explained in the section on refining hazards below).

Ambiguous or recursive wording

The system-level hazards define exactly what “unsafe” means at the system level. A common mistake
is to use the word “unsafe” in the hazards themselves. Doing so creates a recursive definition and does
not add information or value to the analysis. For example, it might be tempting to write “H-1: Aircraft
experiences unsafe flight [L-1]”. It can be tempting because it certainly sounds dangerous—an unsafe
flight by definition must be hazardous, right? The problem is that it is too vague and does not help
specify the actual condition that is unsafe. Some have fallen into the same trap with statements like “H-
1: Aircraft experiences an unsafe state [L-1]”, only to struggle with the rest of the analysis and miss
important cases. A simple solution is to avoid using the word “unsafe” in the hazard itself and instead
specify exactly what is meant by “unsafe” —what system states or conditions would make it unsafe? For
example, an aircraft that is uncontrolled or that is too close to other aircraft would be unsafe. As you will
see, specifying actual conditions like this is extremely useful during later STPA steps.

Confusing hazards with failures

Professionals who are experienced in other hazard analysis methods sometimes fall into the trap of
writing STPA hazards describing potential deviations from specified technical functions or describing
physical component failures. You may be familiar with traditional techniques that begin by searching for
a set of deviations, faults, or functional failures in the technical system. To identify a broader set of
causes in STPA, we cannot assume that the defined and specified functions are safe and correct, that
human operators will perform as expected, that automated behaviors will not induce human error or
confusion, that off-nominal cases will not occur, or that the technical design, specification, and
requirements are correct. For example, the hazard “Controlled flight of aircraft into terrain” can be
included in STPA while it may be omitted by efforts to examine only purely technical functional failures.

Hazard identification in STPA is about system states and conditions that are inherently unsafe—
regardless of the cause. In fact, the system hazards should be specified at a high-enough level that does
not distinguish between causes related to technical failures, design errors, flawed requirements, or
human procedures and interactions.
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What should | look for when reviewing hazards?

Tips to prevent common mistakes when identifying hazards

— Hazards should not refer to individual components of the system

— All hazards should refer to the overall system and system state

— Hazards should refer to factors that can be controlled or managed by the
system designers and operators

— All hazards should describe system-level conditions to be prevented

— The number of hazards should be relatively small, usually no more than 7
to 10

— Hazards should not include ambiguous or recursive words like “unsafe”,
“unintended”, “accidental”, etc.

Note that STPA is an iterative method and the hazards need not be set in stone at this point. Later
STPA steps may uncover new hazards and this list can be revisited and revised as needed.

Defining system-level constraints

Definition: A system-level constraint specifies system conditions or behaviors that need to be
satisfied to prevent hazards (and ultimately prevent losses)

Once the system-level hazards are identified, it is straightforward to identify system-level constraints
that must be enforced: simply invert the condition.

<Hazard> = <System> & <Unsafe Condition> & <Link to Losses>
<System-level Constraint> = <System> & <Condition to Enforce> & <Link to Hazards>

H-1: Aircraft violate minimum separation standards [L-1, L-2, L-4, L-5]
SC-1: Aircraft must satisfy minimum separation standards from other aircraft and objects [H-1]

H-2: Aircraft airframe integrity is lost [L-1, L-2, L-4, L-5]
SC-2: Aircraft airframe integrity must be maintained under worst-case conditions [H-2]

Each constraint can be traceable to one or more hazards, and each hazard is traceable to one or
more losses. In general, the traceability need not be one-to-one; a single constraint might be used to
prevent more than one hazard, multiple constraints may be related to a single hazard, and each hazard
could lead to one or more losses.

Constraints can also define how the system must minimize losses in case the hazards do occur. For
example, if aircraft do violate minimum separation then the violation must be detected and measures
must be taken to keep the aircraft from colliding. If a chemical plant does release toxic chemicals, then
the toxic environment must be detected and appropriate measures taken. These constraints can
generally be written as:

<System-level Constraint> = If <hazard> occurs, then <what needs to be done to prevent or
minimize a loss> & <Link to Hazards>

SC-3: If aircraft violate minimum separation, then the violation must be detected and measures
taken to prevent collision [H-1]

The system-level constraints should not specify a particular solution or implementation. For example,
instead of specifying solutions like installing a collision avoidance system, SC-3 simply states that the
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violation must be detected and there must be some way to prevent collision. Specifying a particular
solution is usually premature at this early stage and can result in alternative and potentially better
solutions being overlooked.

The rest of the STPA analysis will systematically identify scenarios that can violate these constraints,
leading to system-level hazards and losses.

Refining the system-level hazards (optional)

Once the list of system-level hazards has been identified and reviewed, these hazards can be refined
into sub-hazards if appropriate. Sub-hazards are not necessary for many STPA applications®, but they can
be useful for large analysis efforts and complex applications because they can guide future steps like
modeling the control structure (see the next section about control structures).

The first step in refining the system-level hazards is to identify basic system processes or activities
that need to be controlled to prevent system hazards. For example, consider the system-level hazard we
identified earlier for commercial aviation:

H-4: Aircraft comes too close to other objects on the ground [L-1, L-2, L-5]

One way to derive sub-hazards is to ask: What do we need to control to prevent this hazard? To
control the aircraft on the ground, we will need some way to control aircraft deceleration, acceleration,
and steering. If these are not controlled adequately (for example if the deceleration is insufficient), it
could lead to a system-level hazard.

The following sub-hazards can be derived for H-4:

H-4: Aircraft comes too close to other objects on the ground [L-1, L-2, L-5]

Deceleration

H-4.1: Deceleration is insufficient upon landing, rejected takeoff, or during taxiing
H-4.2: Asymmetric deceleration maneuvers aircraft toward other objects
H-4.3: Deceleration occurs after V1 point during takeoff

Acceleration

H-4.4: Excessive acceleration provided while taxiing

H-4.5: Asymmetric acceleration maneuvers aircraft toward other objects
H-4.6: Acceleration is insufficient during takeoff

H-4.7: Acceleration is provided during landing or when parked

H-4.8: Acceleration continues to be applied during rejected takeoff
Steering

H-4.9: Insufficient steering to turn along taxiway, runway, or apron path
H-4.10: Steering maneuvers aircraft off the taxiway, runway, or apron path

Each of these sub-hazards can be used to produce more specific constraints. Table 2.1 shows the
constraints derived for deceleration based on the sub-hazards above.

Table 2.1: Deriving specific process constraints from the sub-hazards

Sub-hazards derived from H-4 Example constraints

H-4.1: Deceleration is insufficient upon landing, SC-6.1: Deceleration must occur within TBD

rejected takeoff, or during taxiing seconds of landing or rejected takeoff at a rate of
at least TBD m/s?

5 Those new to STPA may find it helpful to begin with smaller applications that do not require this step.
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H-4.2: Asymmetric deceleration maneuvers SC-6.2: Asymmetric deceleration must not lead to
aircraft toward other objects loss of directional control or cause aircraft to
depart taxiway, runway, or apron

H-4.3: Deceleration occurs after V1 point during SC-6.3: Deceleration must not be provided after
takeoff V1 point during takeoff

Modeling the control structure

The next step in STPA is to model the hierarchical control structure, as Figure 2.5 shows.

STPA
1) Define 2) Model 3) ldentify 4) ldentify
Purpose of = the Control =#| Unsafe Control j==p Loss
the Analysis Structure Actions Scenarios

2) Model the Control
Structure

Figure 2.5: Modeling the control structure

What is a control structure?

Definition: A hierarchical control structure is a system model that is composed of feedback
control loops. An effective control structure will enforce constraints on the behavior of the
overall system.

A hierarchical control structure is composed of control loops like the one shown in Figure 2.6. In
general, a controller makes decisions to achieve goals and provides control actions to control some
process and to enforce constraints on the behavior of the controlled process. The controlled process is
any process that is controlled, such as a physical process or another controller. The control algorithm
represents the controller’s decision-making process—it determines the control actions to provide.
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Controllers also have process models that represent the controller’s internal beliefs used to make
decisions. Process models may include beliefs about the process being controlled or other relevant
aspects of the system or the environment. Process models may be updated in part by feedback used to
observe the controlled process.

Controller

Control Process
Algorithm | | Model

Control

Controlled Process

Figure 2.6: Generic control loop

Problems can occur at any point in Figure 2.6. For example, a process model that is not consistent
with reality (e.g. a controller believes an aircraft is descending when it is really ascending or believes a
caris in Park when it is really in Reverse, the airport runway is empty, etc.) can lead to control actions
that are unsafe. A sensor failure may cause incorrect feedback and lead to unsafe behavior. A design
may be missing the necessary feedback or may provide delayed feedback that results in a process model
flaw and unsafe behavior. As you'll see, STPA provides a way to systematically identify these and other
scenarios that can lead to a loss.

The generic control loop in Figure 2.6 can be used to explain and anticipate complex software and
human interactions that can lead to losses—two of the biggest challenges in modern engineering. For
humans, the process model is usually called a mental model and the control algorithms may be called
operating procedures or decision-making rules, but the basic concept is the same.

Of course, most systems typically have several overlapping and interacting control loops. Multiple
interacting control loops can be modeled in a hierarchical control structure, as shown in Figure 2.7. A
simple example for aviation is shown in Figure 2.8.
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Figure 2.7: Generic hierarchical control structure
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Figure 2.8: Simple example of a hierarchical control structure for aviation
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In general, a hierarchical control structure contains at least five types of elements’:

- Controllers

- Control Actions

- Feedback

- Other inputs to and outputs from components (neither control nor feedback)

— Controlled processes

The vertical axis in a hierarchical control structure is meaningful: it indicates control and authority

within the system. The vertical placement represents the hierarchy of control from high-level controllers
at the top to the lowest-level entities at the bottom. Each entity has control and authority over the
entities immediately below it, and each entity is likewise subject to control and authority from the
entities immediately above. For example, the aircraft automation in Figure 2.8 can act as a controller by
sending control actions to physical aircraft systems and monitoring feedback. At the same time, the
aircraft automation is also a controlled process that receives and executes control actions from the flight
crew and sends feedback to the crew.

In other words, all downward arrows represent control actions (commands) while the upward arrows
represent feedback. These conventions help to manage complexity and make control relationships and
feedback loops easier to recognize.® In some cases, simply drawing a control structure diagram can
make previously undiscovered flaws painfully obvious. For example, control actions may be provided by
entities that don’t have the necessary feedback to select safe control actions, feedback may be provided
to entities with no ability to do anything about it, multiple controllers may be able to provide conflicting
commands to the same component with no ability to detect or resolve the conflict, etc. If you do not
catch flaws at this stage though, don’t worry—the rest of the STPA method will systematically identify
these and other issues.

Common Points of Confusion

A control structure is not a physical model

The hierarchical control structure used in STPA is a functional model, not a physical model like a
physical block diagram, a schematic, or a piping and instrumentation diagram. The connections show
information that can be sent, such as commands and feedback—they do not necessarily correspond to
physical connections. For example, the interactions between the flight crew and air traffic control are
not of a physical nature, but they are modeled in a functional control structure.

A control structure is not an executable model

The control structure is not an executable model or a simulation model. In fact, control structures
often include components for which executable models do not exist (such as humans). Instead, STPA can
be used to carefully derive the necessary behavioral constraints, requirements, and specifications
needed enforce the desired system properties. For example, the control structure in Figure 2.8 does not
assume that air traffic control will always sent instructions to the flight crew when needed, that they will
always have the capability to send instructions (e.g. that radios will always be operational), that the
correct instructions will always be sent, or that the instructions will always be followed by the pilots. It
simply indicates that a system was/will be created to allow air traffic control to send instructions to the

7 A control structure can also contain actuators and sensors, but these are usually added later during the
scenario identification step

8 Control structures can also be drawn left to right if needed, but we are purposely simplifying the discussion
here.
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flight crew. The next steps in STPA will carefully examine how unsafe behaviors may occur, including
instructions that are sent but not received, unsafe instructions that may be sent, etc. Although the
control structure itself is not an executable model, the STPA method will produce precise requirements
and other outputs that can be used to generate executable models and specifications.

A control structure does not assume obedience

Do not confuse controllers and control actions with obedience. Just because a controller sends a
control action does not mean that in practice it will always be followed. Likewise, just because a
feedback path is included in a control structure does not mean that in practice the feedback will always
be sent when needed or that it will be accurate. The control actions and feedback in a control structure
simply indicate that a mechanism will be created to send this information (that is, it will be in the system
design). It does not imply or assume anything about how controllers and processes will actually behave
in practice. In fact, a major goal of STPA is to analyze the control structure and anticipate how each
element might behave in unsafe and potentially unexpected ways.

Use abstraction to manage complexity

One of the biggest challenges in any hazard analysis is managing system complexity. Control
structures use abstraction in several ways to help manage complexity. For example, in commercial
flights the flight crew might consist of two or three individual pilots. Rather than clutter the control
structure right from the beginning with three separate pilots, we can group them together as a flight
crew that collectively provides control actions and collects feedback. Similarly, rather than explicitly
listing every individual aircraft subsystem, we could begin at a more abstract level by modeling aircraft
automation and the physical processes they control as two levels in the control hierarchy.

The principle of abstraction can also be applied to the command and feedback paths in the control
structure. Rather than listing each individual button, switch, and lever in the cockpit, we might begin
with much broader actions like a climb maneuver. Later, we could refine these broad actions into pitch,
thrust, or other commands as appropriate. This principle is especially useful during early development
phases when individual commands and sensors are not yet known.

The control action path may contain mechanisms by which the controller acts upon a controlled
process (referred to as actuators) and mechanisms by which the controller senses feedback from a
controlled process (referred to as sensors). These details are usually abstracted away when initially
creating the control structure, but the control structure will be refined to include actuators and sensors
later during the scenario creation step.

One additional type of abstraction is used in control structures. Consider the flight commands sent
from the flight crew to the aircraft automation. In a remotely piloted UAV application, those commands
may need to pass through many different components—from a physical button on the command
console, through an embedded system that encodes the command within a digital packet, to a network
switch, a radio transmitter, a satellite, and a radio receiver on the UAV. It is not necessary to show all of
these detailed steps along the control path in the initial control structure—what matters is that the
remote pilot will have some way to send flight commands to the UAV.

In fact, the most efficient way to apply STPA is to begin before those design decisions have been
made and before such details are known. The abstract control structure above can be used to begin
STPA and identify the requirements and constraints for the communication path and other parts of the
system. Then, STPA results can be used to drive the architecture, preliminary and detailed design, make
implementation decisions, and refine the control structure. Even if details are known and design
decisions have been made, it can be helpful to first apply STPA at a higher abstract level first to provide
quicker results and identify broader issues before analyzing more detailed control structure models.
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Modeling the control structure

Control structure modeling begins with an abstract control structure and iteratively adds detail. In
many cases, the control structure and the control loops within the system may be obvious or can be
reused from previous applications. If the control structure is not obvious, the following guidance
explains one way to model a functional control structure and add detail. Appendix B contains examples
of control structures that have been used in different industries.

One way to begin is to identify basic subsystems needed to enforce the constraints and prevent the
hazards identified earlier. For example, we derived hazards and constraints related to insufficient
deceleration. These constraints could be enforced by using a wheel braking subsystem, reverse thrust,
and other subsystems. Figure 2.9 shows an initial control structure with these subsystems.

Flight Crew
Aircraft '
Other Reverse Whe:el
: subsystems Thrust Braking
Subsystem Subsystem

Figure 2.9: Example of a refined control structure with subsystems

The control structure can be refined by defining how each subsystem will be controlled. For the
purposes of this example, the wheel braking subsystem will be refined. Will the wheel braking
subsystem be controlled directly and manually by the flight crew only? Will control units, automated
controllers, or other humans exist that can also control the brakes? If STPA is being applied during later
development stages, these answers may be known and obvious. If STPA is being applied during early
concept development, then the hazards and the constraints above can be used to guide these decisions.
For example, we may include an automated brake controller in the wheel braking subsystem to
automatically brake upon landing or rejected takeoff.

Figure 2.10 shows the refined control structure including a Brake System Control Unit (BSCU) within
the wheel braking subsystem. Notice that we are carefully “zooming in” to add more detail in the
control structure.

27



Flight Crew

Brake System Control Unit
(BSCU)

I

I

I

I

I

I

Other I
subsystems |
I

I

I

I

I

I

I

Physical Wheel Brakes

Aircraft | Wheel Braking Subsystem (WBS) |

Figure 2.10: Refined control structure with subsystem controllers

During control structure development, responsibilities can be assigned to each control structure
entity. These responsibilities are a refinement of the system-level constraints—what does each entity
need to do so that together the system-level constraints will be enforced? For example, the BSCU might
be responsible for automatically pulsing the brakes when braking causes a skid (anti-skid function) while
the flight crew may be responsible for deciding when the brakes need to be applied.

Example responsibilities related to wheel braking:

Physical Wheel Brakes

o R-1: Decelerate wheels when commanded by BSCU or Flight Crew [SC-6.1]

BSCU

o R-2: Actuate brakes when requested by flight crew [SC-6.1]

o R-3:Pulse brakes in case of a skid (Anti-skid) [SC-6.2]

o R-4: Automatically engage brakes on landing or rejected takeoff (Autobrake) [SC-6.1]

Flight crew

o R-5: Decide when braking is needed [SC-6.1, SC-6.3]

o R-6: Decide how braking will be done: Autobrake, normal braking, or manual braking [SC-
6.1]

o R-7: Configure BSCU and Autobrake to prepare for braking [SC-6.1]

o R-8: Monitor braking and disable BSCU, manually brake in case of malfunction [SC-6.1, SC-
6.2]

Control actions for each controller can be defined based on these responsibilities. For example, the

flight crew will need the capability to send manual braking control actions to satisfy R-5 and R-6. They
will need a way to arm and set the BSCU to satisfy R-6 and R-7. They may need to disarm the BSCU to
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satisfy R-8. Figure 2.11 shows a revised control structure with labeled control actions based on the
responsibilities.

Flight Crew
Manual controls Arm and Set, Manual
(Engine throttle, Disarm, braking
Steer, Reverse thrust, Brake
etc.)

1T T T T T T T[T T === T T
| . |
| Brake System Control Unit I
[ (BSCU) [
| |
| |
| |
Other | Brake I
subsystems 1 1
| |
| |
| |
[ Physical Wheel Brakes 1
| |
| |
: 1 f 1

. Wheel Braking Subsystem (WBS)
: Aircraft N !

Figure 2.11: Refined control structure after allocation of processes to subsystems

At this point, the controllers and control actions have been identified and labeled but what about
feedback? Feedback can be derived from the control actions and responsibilities by identifying the
process models that controllers will need to make decisions. Then, feedback and other information
needed to form accurate process models can be identified. For example, R-3 specifies that the BSCU will
need to pulse the brakes in case of a skid. To do this, the BSCU will need to know that a skid is occurring
(information that should be included in the BSCU’s process model). What feedback is needed to detect a
skid? Wheel speed feedback could be used. Similarly, R-8 specifies that the flight crew may need to
disable the BSCU in case of a malfunction. To do this, the flight crew will need to know that the BSCU is
malfunctioning (again, information that should be in the process model). What feedback can the flight
crew use to detect a malfunction? Feedback about BSCU faults could be provided. To automatically
engage the brakes upon landing or RTO (R-4), the BSCU will need to know when the aircraft has landed
or when RTO is occurring (should be in the process model). Weight on wheels switches and other inputs
could be used to detect landing and RTO conditions. Table 2.2 below shows how feedback can be derived
from the responsibilities.
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Table 2.2: Examples showing how feedback can be derived from responsibilities

BSCU Responsibility Process Model Feedback

Actuate brakes when requested | Braking is requested by flight Brake pedal applied
by flight crew [SC-6.1] crew

Pulse brakes in case of a skid Aircraft is skidding Wheel speeds
(Anti-skid) [SC-6.2] Inertial reference unit
Automatically engage brakes on | Aircraft landed Weight on wheels
landing or RTO (Autobrake) [SC- | Takeoff is rejected Throttle lever angle
6.1]

The control structure can be refined further by using the responsibilities to “zoom in” again and add
additional details. For example, the physical wheel brakes are responsible for decelerating the wheels on
command (R-1). This could be done with hydraulics. R-6 indicates that the BSCU will need to execute
both normal and automatic braking (Autobrake). Two controllers within the BSCU could be used to
control these two behaviors: an autobrake controller and a hydraulic controller.

Figure 2.12 shows a refined control structure with feedback labeled and with BSCU internal
controllers identified.

Flight Crew
Manual controls Arm and Set,| [Autobrake BSCU| [BSCU mode
. Other system ) .
(Engine throttle, Steer, d tat Disarm| |mode power | |BSCU faults  pgrake Braking mode
Reverse thrust, etc.) modes, states Programmed  on/off (pedal) (normal/alternate)
decel rate
| X
| | BSCU :
l gessnsasnnnssslissdinssasasnsestssinsenianinsnsensanny E
——— 11—  Autobrake Controller i
Touchdown NeeseesIsssEIenIEseRITNIpesRansuIensasInsensasinnensnerand I E
Rejected Takeoff | Brake cmd Manual braking state 1
1 Wheel speed I
l Nesssshansassassnsanssssasanssssassnsassassnsanibons, | E
I i
I I
Other 1 :
subsystems : Wheel speed Open/close i
M valves [
1 i
I I
. il
: Hydraulics A E
Wheel Brakin |
: g Wheel Brakes 1
'Subsystem (WBS) 1}
Brake i
i Wheels
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Figure 2.12: Control structure after refinement based on the responsibilities
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Common questions when modeling the control structure

Does the control structure need to be complete before proceeding?

If STPA is being applied early before development is finished, some information may not be known
and the control structure may be incomplete. The analysis can begin with an incomplete control
structure and STPA will help identify potentially missing feedback, controls, and other gaps so the
control structure can be refined in parallel with development. The bare minimum needed to begin the
next steps is at least one controller, control action, and controlled process. However, in general STPA
will be easier and more efficient if relevant information is not intentionally missing from the control
structure.

If STPA is being applied during later development stages after decisions about controllers, control
actions, and feedback have already been made, then there is no reason to intentionally omit high-level
information from the control structure. STPA can be applied to the design as it exists to identify
potential flaws like critical feedback that was overlooked.

How specific should the arrow labels be?

Avoid using ambiguous and vague labels in the control structure, such as labeling all control actions
as simply “Commands”, all feedback as simply “Feedback” or “Status”, and controllers as simply
“Computer” or “Controller.” Labels for control actions should indicate the type of command (if known),
like “Open/close valves” and feedback should indicate the type of information being sent (if known), like
“Wheel speed”. The specific physical medium used to send control actions and feedback is irrelevant at
this point—what matters is the functional information that can be sent. For example, use “BSCU power
on/off” rather than “BSCU button”, “Shared bus”, or “Encoded digital packets.” Similarly, labels for
controllers should indicate the functional type of behavior or the role of the controller, not the physical
implementation. For example, use controller labels like “Autobrake Controller” rather than “Single
Board Computer,” and use labels like “Flight Crew” or “Pilot” whether the piloting function is
accomplished on board or on the ground.

Should the control structure include all actuators and sensors?

Specific actuators and sensors are not needed to begin STPA and do not need to be included yet
(they will be included in a later step). To help manage complexity, it can be helpful to wait until these
details need to be considered during the scenario creation step later in STPA. For example, the wheel
braking subsystem control actions and feedback in Figure 2.12 may be implemented with different kinds
of electromechanical valves or by using some other completely different implementation. What matters
at this phase are the types of commands and feedback that might be provided, not the specific
implementation (which may or may not be known).

How do physical processes and physical interactions fit into the control structure?

Like any model, a control structure model emphasizes certain aspects of the real world while
abstracting or de-emphasizing others. A control structure will emphasize functional relationships and
functional interactions, which is very useful for identifying problems like design flaws, requirements
flaws, human error, software errors, and even traditional physical component failures. A control
structure model does not typically capture purely physical or geometric relationships like physical
proximity between components or fire propagation.

The physical processes being controlled are typically specified at the lowest level of the control
structure while every level above specifies functional controllers that make decisions and directly or
indirectly control the physical processes.
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Does the control structure require a linear hierarchy?

No. For some systems, the control structure may appear similar to a ladder with a clear vertical linear
hierarchy. Control structures for other systems may include multiple controllers at the same vertical
level that do not control each other. Controllers may all control the same physical process, or they may
control different processes.

Controllers at the same level may also communicate with each other outside of a control/feedback
relationship. Such communication may be represented by horizontal arrows in the control structure
diagram. In general, the interactions (arrows) in a control structure can represent any of three
categories: Control actions, feedback, and other information.

(a) (b) ()

Controller A Controller B Controller A Controller A
A A F N I 3 F 3
v v v v
Controlled Process Controller B Controller B
F N F 3
v \ 4 v
Controlled Controlled Process
Process
(d)
Controller A
A r 3 a
v v
Controller B < > Controller C
F S F 3
v v v
Controlled | Controlled Controlled
Controlled Process X ——p
Process W Process Y Process Z

Figure 2.13: Different types of control structures

Figure 2.13 shows a few different types of control structure models, each with different advantages
and tradeoffs to consider when designing or analyzing a system. The control structure in (a) shows two
controllers operating in parallel to control and monitor a shared process. The controllers do not interact
with each other and neither one can control the other (which may lead to loss scenarios that STPA will
identify). This type of structure could be advantageous if controllers will need to act quickly or
independently of each other—for example, it might be advantageous to provide several operators with
the capability to directly abort an operation whenever an unsafe condition is observed without going
through a chain of command. However, this structure can present coordination challenges like diffusion
of responsibility and assumptions about the actions of other controllers (later steps will analyze these
and other problems in more detail).

The control structure in (b) shows a linear control hierarchy such as a clear chain of command. This
structure may help address the coordination issue and clarify the difference in responsibilities for each
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controller, but may present challenges in terms of reaction time for Controller A’s feedback and control
actions and is more dependent on the operation of Controller B.

Control actions and feedback may “skip” over levels—there is no model limitation that prevents
controllers from interacting beyond one level above and below. For example, high-level controllers may
be able bypass other controllers and directly control or monitor lower-level process as in (c). Controller
A could represent pilots that normally use automation in Controller B to actuate the brakes. However, in
an emergency the pilots may be able to bypass Controller B and directly (manually) actuate the brakes.

More complex structures like (d) are also possible. There is no requirement for a 1-to-1 mapping
between controllers and processes. A controller may control one or more processes, and a process may
be controlled by zero or more controllers. Typically, each control action path will be paired with a
parallel feedback path but not always. For example, Controller C may not be able to control Process Y
directly. Instead, it may control Process X and monitor the effect of X on Process Y.

How do | figure out who controls who?

In many cases the control relationship is simple and obvious, such as a supervisor giving instructions
to a subordinate or a computer sending commands to open/close a valve. Control relationships can also
be less direct, such as managers assigning priorities, airlines providing standard operating procedures,
etc. These are all different forms of control.

As mentioned earlier, control is different from obedience. Just because a control relationship exists
does not mean that the control actions will always be executed and performed adequately. In fact, we
may not even want all control actions to be obeyed all the time; control actions may potentially be
disregarded for good reasons when required to prevent a loss in some unexpected situation. STPA does
not assume obedience and these problems will be carefully examined in later steps.

Similarly, the ability to trigger a response or influence behavior of another component does not
automatically imply control. A control action to open a valve may trigger the valve to open, but
conversely a feedback signal indicating high temperature may trigger a controller to turn on a fan. The
ability to influence or respond is not sufficient to distinguish control actions from feedback.

Control involves making purposeful decisions to achieve goals. Feedback can be provided without
being aware of (or responsible for) a particular higher-level goal, but control actions are always provided
to achieve a goal. Control also typically involves supervision—monitoring lower-level entities, having
better capability or information to evaluate their behaviors or impacts, and guiding them or intervening
to ensure higher-level goals are achieved.

The control hierarchy is closely related to the hierarchy of goals and responsibilities. The automated
BSCU controller above may have very narrow responsibilities related to triggering brakes when a landing
is detected. The flight crew has higher-level responsibilities like deciding when to land and higher-level
goals like avoiding a rough landing. The BSCU may be a necessary but insufficient element in achieving
these higher-level flight crew goals—the flight crew must supervise the BSCU and many other elements
to achieve the higher-level goals. Similarly, air traffic control has even higher-level responsibilities like
ensuring minimum separation between multiple aircraft and higher-level goals like maximizing
throughput across many flights. A single flight crew is only one element used by air traffic control to
achieve the goals, and the flight crew might not even be aware of how they are contributing to those
higher-level goals or if those higher-level goals are being achieved by air traffic control.

Finally, control is closely related to authority. Consider the relationship between air traffic control
and pilots. Air traffic control has authority over pilots and provides instructions and clearances that
pilots generally must obey. Pilots do not have authority over air traffic control, and they cannot simply
order air traffic control to obey. Pilots can declare an emergency and air traffic control will need to
respond appropriately to that feedback—just because pilots can trigger a response does not imply
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control. Pilots can also disobey air traffic control instructions when necessary to ensure safety of the
flight, but obedience is also different from control. Pilots do have final and direct authority over their
aircraft, but they do not have final authority over ATC and they do not manage the overall airspace. ATC
generally controls aircraft indirectly by issuing instructions and clearances, not the other way around.
Chapter 5 contains further discussion about control structures and control relationships as they relate to
organizational and social analysis.

Although beginners sometimes struggle with these distinctions, with more experience it quickly
becomes easy and natural. It can also be helpful to realize that mistakes about who controls whom in
the control structure usually do not have a significant impact on the results of the analysis. For example,
suppose control action X is mischaracterized as feedback X. Because it is characterized as feedback, the
step that identifies unsafe control actions will not consider how a missing or delayed control action X
might lead to a hazard. However, the next step examines potential feedback problems and will identify
the same scenarios when considering how missing or delayed feedback X might lead to a hazard.

Do | need to document anything other than the control structure diagram?

It is good practice to document any additional information that is helpful to understand the control
structure. Additional information about controllers such as a basic description, purpose, special
functionality, controller responsibilities, process models, etc. should be documented for a completely
specified control structure. Clarifying information about control actions and feedback can also be
helpful, particularly when important aspects may not be clear from short labels. The same is true for
controlled processes. In general, any important clarifying information or assumptions should be clearly
documented along with the control structure diagram.

What should | look for when reviewing a control structure?

The following tips can help find common mistakes in a control structure:

Tips to prevent common mistakes in a control structure

— Ensure labels describe functional information that is sent, not a specific
physical implementation.

— Avoid ambiguous and vague labels like simply "Command" or "Feedback"
when the type of information is known.

— Check that every controlled physical process is controlled by one or more
controllers (not always required, but often indicates a mistake).

- Review responsibilities (including traceability) for conflicts and gaps.

— Check that control actions needed to satisfy the responsibilities are
included.

- Check that feedback needed to satisfy the responsibilities is included.
(optional if applied early in concept development when feedback is
unknown; later steps can identify missing feedback)

Identifying Unsafe Control Actions

Once the control structure has been modeled, the next step (shown in Figure 2.14) is to identify
Unsafe Control Actions.
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Figure 2.14: Identify Unsafe Control Actions

Definition: An Unsafe Control Action (UCA) is a control action that, in a particular context and
worst-case environment, will lead to a hazard.?

Table 2.3 below shows examples of UCAs for the BSCU controller. A larger set of UCAs for the wheel
braking subsystem can be found in Appendix C.

°® The term “unsafe” refers to the hazards identified in STPA. As discussed earlier, hazards can include issues
related to loss of human life or injury (traditional safety) but they can also be defined much more broadly to
include other losses like a mission loss, loss of performance, environmental losses, etc.
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Table 2.3: Examples of Unsafe Control Actions for the BSCU (partial example)

provide the Brake
control action
during landing roll
when the BSCU is
armed [H-4.1]

action during a normal
takeoff [H-4.3, H-4.6]

UCA-5: BSCU Autobrake
provides Brake control
action with an
insufficient level of
braking during landing
roll [H-4.1]

UCA-6: BSCU Autobrake
provides Brake control
action with directional or
asymmetrical braking
during landing roll [H-4.1,
H-4.2]

provides the
Brake control
action too late
(>TBD seconds)
after
touchdown
[H-4.1]

Control Not providing Providing causes hazard | Too early, too | Stopped too
Action causes hazard late, out of soon, applied too
order long
Brake UCA-1: BSCU UCA-2: BSCU Autobrake UCA-3: BSCU UCA-4: BSCU
Autobrake does not | provides Brake control Autobrake Autobrake stops

providing the
Brake control
action too early
(before TBD taxi
speed attained)
when aircraft
lands [H-4.1]

There are four ways a control action can be unsafe (represented in the columns above):

1. Not providing the control action leads to a hazard.

Pwn

discrete ones).

Consider UCA-2:

Providing the control action leads to a hazard.
Providing a potentially safe control action but too early, too late, or in the wrong order
The control action lasts too long or is stopped too soon (for continuous control actions, not

UCA-2: BSCU Autobrake provides Brake command during a normal takeoff [H-4.3, H-4.5]

This UCA is unsafe because it can lead to H-4.3: Deceleration occurs after the V1 point during takeoff
and H-4.5: Acceleration is insufficient during takeoff. Every UCA can be traced to one or more hazards
(or sub-hazards), and it is good practice to document the traceability in brackets at the end of every

UCA.

UCAs should specify the context in which the control action is unsafe. The context is critical. Suppose
you know that the BSCU on an aircraft can provide a Brake command. Could that command be unsafe?
It’s impossible to assess without considering the context. UCA-2 contains the context “during a normal
takeoff”, which is what makes the control action unsafe.

If a control action were always unsafe, then it probably would not have been designed into the

system to begin with. Every UCA must specify under what conditions (in what context) the control action
is unsafe. Then we can eliminate those instances from the system design or find ways to mitigate them.

Any relevant context can be referenced in a UCA, including environmental conditions, controlled process
states, states of the controller, previous actions by the controller (e.g. repetitive actions), states of other

36



controllers, previous actions by others, simultaneous or conflicting actions, parameters or properties of
the control action (e.g. a particular braking rate being programmed), or any other relevant conditions.

Using words like “when”, “while”, or “during” in UCA construction is often helpful in developing the
context.

A UCA contains five parts:

UCA-2: BSCU Autobrake provides Brake command during a normal takeoff [H-4.3]
<Source> <Type> <Control Action> <Context> <Link to Hazards>

The first part is the controller that can provide the control action. The second part is the type of
unsafe control action (provided, not provided, too early or too late, stopped too soon or applied too
long). The third part is the control action or command itself (from the control structure). The fourth part
is the context discussed above, and the last part is the link to hazards (or sub-hazards).

UCAs are often written with each part in the same order shown above, but in some cases it may be
clearer or more natural to use a different ordering. The ordering is not critical. The key point is that
UCAs contain these five parts.

Common questions about UCAs

Does a UCA guarantee that a hazard will always result?

No. In a best-case scenario, UCA-2 might occur early during takeoff, the pilots recognize that UCA-2
has happened, they immediately disable the BSCU, and there is no accident. In a worst-case scenario,
the pilots might not be able to react and recover in time, their actions to disable the BSCU might be
ineffective, there is a significant tail-wind and UCA-2 occurs right after the V1 decision speed, or other
factors arise and the aircraft runs off the runway (H-4). The goal of STPA is not to argue whether the
best-case or worst-case scenarios are more likely or to make assumptions about pilot capabilities and
response. When engineering the BSCU we’d still like to prevent it from sending brake commands during
normal takeoffs regardless of whether the flight happens to occur in a best-case or a worst-case
environment. The goal of this step is simply to identify the behaviors that should be prevented. STPA is a
worst-case analysis method not a best-case, average-case, or most-likely-case method.

Can | identify UCAs when we already have safequards in place?

Systems may include safeguards like protective features, redundancies, and backup systems
specifically meant to prevent unsafe control actions from causing hazards. For example, some might
argue that UCA-1: “BSCU Autobrake does not provide the Brake control action during landing roll when
the BSCU is armed” cannot lead to a hazard because an independent alternate braking system is
included in the design that effectively bypasses the BSCU and allows manual braking at any time. In a
best-case scenario, the safeguards will operate as intended, will be effective and sufficient, and the
hazard may be avoided. However, in a worst-case scenario the safeguards may not operate as intended,
may not be sufficient, or they may not be effective for the situation at hand. Similar to the reasoning
above, STPA is a worst-case analysis method and we cannot omit UCAs when a safeguard exists.

Another way to understand this reasoning is to realize that we’d like to prevent UCAs even if
safeguards do exist. For example, even though an alternate braking system may be included in the
design we wouldn’t intentionally design the BSCU to provide UCAs. We'd like to make sure the BSCU
Autobrake will provide the proper brake control actions (e.g. to prevent UCA-1, etc.) even when
safeguards like an alternate braking system are available.

In fact, STPA is ideally applied early before safeguards are known and incorporated into the design.
STPA identifies UCAs that must be prevented, and the UCAs are then used to derive functional
requirements and make design decisions to prevent or mitigate the UCAs. After potential unsafe
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behavior is identified, then the specific design features can be created and safeguards added (if the
design does not already exist) or the adequacy of existing design decisions and safeguards can be
determined (if the design already exists).

The last two types of unsafe control actions are both about timing. What’s the difference?

The third type of UCA is about control actions provided at the wrong time—too early, too late, or out
of order. The fourth type of unsafe control action only applies to control actions with a duration, that is,
continuous or non-discrete control actions.

First, suppose the Brake command provided by BSCU Autobrake is implemented as a continuous
control action. In other words, the brakes are applied when Autobrake starts providing the Brake control
action, and the brakes continue to be applied until Autobrake stops providing the Brake control action.
The initial timing of the Brake control action can cause a hazard:

UCA-3: BSCU Autobrake provides the Brake control action too late (>TBD seconds) after
touchdown [H-4.1]

The Brake control action could also be provided correctly during a landing and on-time without delay
(within TBD seconds), but Autobrake then immediately stops providing the control action and the brakes
immediately cease to be applied. The braking was stopped too soon to be effective. This behavior could
cause H-4.1 even though the control action was originally provided in the right situation and on time, as
reflected in UCA-4:

UCA-4: BSCU Autobrake stops providing the Brake control action too early (before TBD taxi
speed attained) when aircraft lands [H-4.1]

Now let’s consider an alternative situation: the BSCU Autobrake provides two separate discrete
control actions to Start Braking and to Stop Braking. The individual control actions do not have a
meaningful duration, so “stopped too soon / applied too long” is not applicable. Instead, we’d consider
how the either control action could be provided too early or too late:

UCA-3: BSCU Autobrake provides the Start Brake control action too late (>TBD seconds) after
touchdown [H-4.1]

UCA-4: BSCU Autobrake provides the Stop Brake control action too early (before TBD taxi speed
attained) when aircraft lands [H-4.1]

Notice that the same issues are covered by the analysis whether control actions are continuous or
discrete.

Do | need to identify exactly one UCA for each type of unsafe control action?

No. Although all four UCA types should be considered, they may not all be applicable in every case. It
is also possible to identify several UCAs of a single type, as demonstrated by UCA-2, UCA-5, and UCA-6
above. In general, each category may contain 0, 1, 2, or more UCAs.

Are there more than four types of unsafe control? Is another category needed?

These four categories are provably complete—there is no other category of unsafe control action.
However, there are subcategories. For example, there are several ways the second type of UCA could
occur:

1. Not providing the control action leads to a hazard
2. Providing the control action leads to a hazard
a. Consider contexts in which the control action may never be safe
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b. Consider contexts in which the control action has an incorrect parameter (e.g. setting an
incorrect emergency frequency on a radio)
c. Consider contexts in which an insufficient, excessive, or repetitive control action may be
unsafe (e.g. providing insufficient, excessive, or repetitive braking commands)
d. Consider contexts in which the direction of the control action may be unsafe (e.g.
providing turn left instead of turn right commands)
e. Consider contexts in which the control action has already been provided (e.g. repetitive,
oscillatory, intermittent control actions)
f. Consider contexts in which the control action is provided too quickly or too slowly (e.g.
ramp rate, frequency, etc.)
g. Etc.
3. Providing a potentially safe control action but too early, too late, or in the wrong order
4. The control action lasts too long or is stopped too soon

Case (b) is only relevant for control actions that include one or more parameters. For example, a
BSCU Brake control action is not typically a simple binary on/off control action. The BSCU controls
braking by commanding the specific amount of braking to be applied. Recall UCA-5 above, which states
that even though the BSCU may correctly provide a brake command during landing roll, it could still be
unsafe if the BSCU commands an insufficient level of braking. UCA-6 exists because the braking
commands could be sent asymmetrically causing the aircraft to turn in a wrong direction. Whenever
control actions can specify one or more parameters, it is important to consider how the parameters may
be insufficient, excessive, in a wrong direction, or otherwise unsafe.

| just identified an important UCA that isn’t related to any system-level hazards. What do | do?

Every UCA must be traceable to one or more system-level hazards. If you identify a UCA that does
not relate to one of the identified hazards, you could be missing a hazard. Identify the system-level state
or condition caused by the UCA and consider adding a new hazard or revising the existing set of hazards
to include the new state or condition. STPA is iterative and need not be performed in a strictly linear
fashion—earlier results can be updated as the analysis progresses and as more information becomes
available.

Where is the outcome or result of the UCA described?

Every UCA should reference the hazards or sub-hazards it can lead to, which captures system-level
effects and outcomes of the UCA. For many systemes, this link between a UCA and hazards is clear and
obvious. For example, the BSCU providing insufficient braking during landing roll is clearly related to H-
4.1: Insufficient deceleration upon landing.

However, in some cases the link between a UCA and the hazards may be more complex or
unintuitive. It is good practice to document any special reasoning behind UCAs and their relationship to
the hazards, particularly in more complex applications where it is not obvious. The reasoning can
sometimes be documented by adding a few words to the UCA, but this can be difficult if the reasoning is
not simple. A general solution is to document comments for each UCA as needed. UCA comments may
describe the rationale for the UCA, how the UCA can lead to hazards, any assumptions the UCA is based
on, the effects or results of the UCA, or other information needed to understand the UCA and how it can
lead to hazards.

Be careful not to confuse the UCA context with UCA outcomes, results, or other reasoning. One
common mistake is to omit the UCA context and instead include the UCA result. For example:

39



Correct UCA: BSCU Autobrake provides Brake command during normal takeoff [H-4.3]

Incorrect UCA: BSCU Autobrake provides Brake command resulting in a collision

If the UCA context (the current state or condition) is not identified, the next steps that create
requirements and identify scenarios will be difficult or impossible to perform. Every UCA must contain
the UCA context. For clarity, it may also contain the result.

Should | specify process model flaws in the UCA context?

Be careful not to confuse a UCA with a cause of a UCA. The UCA context should specify the actual
(true) state or condition that would make the control action unsafe, not a particular controller process
model or belief (which may or may not be true). The next step in STPA will identify causes of UCAs, such
as process model flaws and other factors. For example:

Correct UCA: BSCU Autobrake provides Brake command during normal takeoff

Incorrect UCA: BSCU Autobrake provides Brake command when it incorrectly believes the
aircraft is landing

Identifying Human UCAs

The same approach can be applied to human controllers to identify UCAs. For example, consider the
flight crew control action to power off the BSCU. Table 2.4 shows some examples of the corresponding
flight crew UCAs for this command. Additional example UCAs for the flight crew related to wheel braking
can be found in Appendix C.

Table 2.4: Example Unsafe Control Actions for the Flight Crew (partial example)

not provide BSCU
Power Off when
abnormal WBS
behavior occurs
[H-4.1, H-4.4, H-7]

provides BSCU
Power Off when
Anti-Skid
functionality is
needed and WBS
is functioning
normally [H-4.1,
H-7]

BSCU too early
before Autobrake
or Anti-Skid
behavior is
completed when
it is needed [H-
4.1, H-7]

Control Action Not providing Providing causes | Too early, too Stopped too
causes hazard hazard late, out of order | soon, applied too
long
Power Off BSCU UCA-1: Crew does | UCA-2: Crew Crew powers off N/A

The last column is considered N/A (not applicable) because the Power Off control action does not

have a duration in this case. The crew simply provides Power On and Power Off commands to toggle the
state of the BSCU. Issues related to the BSCU remaining powered off for too long will be captured when
considering the Power On command not provided or provided too late. Note that humans are treated in
the same way as other types of system components and can be easily integrated into the overall
analysis.

Tips to prevent common mistakes

The following tips will help prevent common mistakes when identifying UCAs:
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Tips to prevent common mistakes when identifying UCAs

— Ensure every UCA specifies the context that makes the control action unsafe.

— Ensure UCA contexts specify the actual states or conditions that would make the
control action unsafe, not potential beliefs about the actual states.

— Ensure the UCA contexts are defined clearly.

— Ensure the UCA contexts are included and not replaced by future effects or outcomes.

— Ensure traceability is documented to link every UCA with one or more hazards.

- Review any control action types assumed to be N/A, and verify they are not applicable.

— For any continuous control actions with a parameter, ensure that excessive,
insufficient, and wrong direction of the parameters are considered.

— Ensure any assumptions or special reasoning behind the UCAs are documented

Defining Controller Constraints

Definition: A controller constraint specifies the controller behaviors that need to be satisfied to

prevent UCAs

Once UCAs have been identified, they can be translated into constraints on the behavior of each
controller. For example, when analyzing BSCU control actions we determined that the BSCU providing a
Brake control action during a normal takeoff could lead to a hazard. Therefore, the BSCU must not
provide the Brake control action in that context. In general, each UCA can be inverted to define
constraints for each controller. Table 2.5 shows the BSCU behavioral constraints that can be derived

from the UCAs in Table 2.4.

Table 2.5: Example Controller Constraints for BSCU (incomplete)

Unsafe Control Actions

Controller Constraints

UCA-1: BSCU Autobrake does not provide the
Brake control action during landing roll when the
BSCU is armed [H-4.1]

C-1: BSCU Autobrake must provide the Brake
control action during landing roll when the BSCU
is armed [UCA-1]

UCA-2: BSCU Autobrake provides Brake control
action during a normal takeoff [H-4.3, H-4.5]

C-2: BSCU Autobrake must not provide Brake
control action during a normal takeoff [UCA-2]

UCA-3: BSCU Autobrake provides the Brake
control action too late (>TBD seconds) after
touchdown [H-4.1]

C-3: BSCU Autobrake must provide the Brake
control action within TBD seconds after
touchdown [UCA-3]

UCA-4: BSCU Autobrake stops providing the
Brake control action too early (before TBD taxi
speed attained) during landing roll [H-4.1]

C-4: BSCU Autobrake must not stop providing the
Brake control action before TBD taxi speed is
attained during landing roll [UCA-4]

UCA-5: BSCU Autobrake provides Brake control
action with an insufficient level of braking during
landing roll [H-4.1]

C-5: BSCU Autobrake must not provide less than
TBD level of braking during landing roll [UCA-5]

UCA-6: BSCU Autobrake provides Brake control
action with directional or asymmetrical braking
during landing roll [H-4.1, H-4.2]

C-6: BSCU Autobrake must not provide
directional or asymmetrical braking during
landing roll [UCA-6]
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Inputs and Outputs for Control Action Analysis

Figure 2.15 summarizes the inputs and outputs for the control action analysis.

3) Identify Unsafe Control Actions

»

v

Unsafe Control

System-level hazards Identify Unsafe ne

Sub-hazards Control Actions o | Define controller ctions ;

Control structure | constraints Controller
Responsibilities

Constraints

Figure 2.15: Overview of control action analysis

Identifying loss scenarios

Once unsafe control actions have been identified, the next step (shown in Figure 2.16) is to identify
loss scenarios.

STPA
1) Define 2) Model 3) Identify 4) Identify
Purpose of the Control =1 Unsafe Control Loss
the Analysis Structure Actions Scenarios

4) Identify Loss
Scenarios

Figure 2.16: Identify loss scenarios

Definition: A loss scenario describes the causal factors that can lead to the unsafe control
actions and to hazards.
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Two types of loss scenarios must be considered, as shown in Figure 2.17:
a) Why would Unsafe Control Actions occur?
b) Why would control actions be improperly executed or not executed, leading to hazards?

a) Why would Unsafe Control
Actions occur?

b) Why would control : >
actions be improperly | Controller
executed or not
executed? | Control Process
Algorithm Model
Feedback
Actuators \\\ Sensors

NS
NS
NS
NN
NS
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N
W
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W
\

<4 Controlled Process

. Control Actions |

_________________________________________________________________________

Figure 2.17: Two types of scenarios that must be considered

Notice that Figure 2.17 includes sensors and actuators. Up to this point in the analysis, we have
considered the control actions and feedback that may exist but we have not yet examined how the
feedback is measured or detected (e.g. with sensors) or how the control actions are executed (e.g. with
actuators). Because scenarios identify the specific causes of unsafe control and feedback, it is helpful to
refine the control structure to include sensors and actuators.

a) Identifying scenarios that lead to Unsafe Control Actions
This type of scenario can be created by starting with a UCA and working backward to explain what
could cause the controller to provide (or not provide) that control action. In general, scenarios that lead
to UCAs may include (but is not limited to):
- Failures related to the controller (for physical controllers)
o Physical failure of the controller itself
o Power failure
o Etc.
- Inadequate control algorithm
o Flawed implementation of the specified control algorithm
o The specified control algorithm is flawed
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o The specified control algorithm becomes inadequate over time due to changes or
degradation
- Unsafe control input
o UCA received from another controller (already addressed when considering UCAs from
other controllers)
- Inadequate process model
o Controller receives incorrect feedback/information
o Controller receives correct feedback/information but interprets it incorrectly or ignores
it
o Controller does not receive feedback/information when needed (delayed or never
received)
o Necessary controller feedback/information does not exist
To create scenarios that involve unsafe control actions, we must consider factors shown in Figure
2.18 starting with the unsafe controller behavior that caused the UCA.

2) Causes of inadequate

Control inputs feedback/information
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Figure 2.18: Unsafe Control Actions can be caused by (1) unsafe controller
behavior and (2) inadequate feedback and other inputs
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1) Unsafe controller behavior

There are four general reasons why a controller might provide (or not provide) a control action that
is unsafe:

Failures involving the controller (for physical controllers)
Inadequate control algorithm

Insafe control input (from another controller)
Inadequate process model

For physical controllers, a UCA may occur due to a failure related the controller. For example, the
BSCU may not provide the brake command because the BSCU controller fails, because the BSCU power
fails, etc. To identify these scenarios, start with a UCA, identify the controller, and identify physical
failures related to the controller that can explain the UCA. For example:

UCA-1: BSCU Autobrake does not provide the Brake control action during landing roll when the
BSCU is armed [H-4.1]

Scenario 1 for UCA-1: The BSCU Autobrake physical controller fails during landing roll when
BSCU is armed, causing the Brake control action to not be provided [UCA-1]. As a result,
insufficient deceleration may be provided upon landing [H-4.1]

An inadequate control algorithm can also cause a UCA. A control algorithm specifies how control
actions are selected based on the controller’s process model, previous control inputs and outputs, and
other factors. For human controllers, the control algorithm is sometimes called decision-making and it
may be shaped by different factors like training, procedures, and past experience.

To identify these scenarios, start with a UCA and identify how the control algorithm may cause the
UCA. For example:

BSCU Autobrake example:

UCA-3: BSCU Autobrake provides the Brake control action too late (>TBD seconds) after
touchdown [H-4.1]

Scenario 1 for UCA-3: The aircraft lands, but processing delays within the BSCU result in the
Brake control action being provided too late [UCA-3]. As a result, insufficient deceleration may
be provided upon landing [H-4.1]

Human Crew example:

Crew-UCA-1: Crew does not provide BSCU Power Off when abnormal WBS behavior occurs [H-
4.1, H-4.4]

Scenario 1 for Crew-UCA-1: Abnormal WBS behavior occurs and a BSCU fault indication is
provided to the crew. The crew does not power off the BSCU [Crew-UCA-1] because the
operating procedures did not specify that the crew must power off the BSCU upon receiving a
BSCU fault indication.

In general, flaws in the control algorithm can stem from:

Flawed implementation of the specified control algorithm

The specified control algorithm is flawed
The specified control algorithm becomes inadequate over time due to changes or degradation

The specific reasons for each of these types of flaws may be dependent on the application being
studied.
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One common control algorithm flaw occurs when the control algorithm assumes that previous
control actions have been executed properly. This flaw is especially relevant when there is no feedback
to indicate whether the control action was successful. For example, the BSCU Autobrake may not
provide the Brake control action because it incorrectly assumes that a previous Brake control action was
successful and that the aircraft was already braking.

To include scenarios related to security, one additional possibility needs to be considered here:
identify if and how the control algorithm flaw could be introduced by an adversary.

Unsafe control inputs from other controllers can also cause UCAs. These can be found during the
previous step when identifying Unsafe Control Actions for other controllers.

Finally, inadequate process models can cause Unsafe Control Actions. As explained above, process
models represent the controller’s internal beliefs that are used by the control algorithm to determine
control actions. Process model flaws occur when a controller’s process model does not match reality.
Process model flaws may occur because:

- Controller receives incorrect feedback/information

- Controller receives correct feedback/information but interprets it incorrectly or ignores it

- Controller does not receive feedback/information when needed (delayed or never received)

- Necessary controller feedback/information does not exist

These problems could arise in many different ways depending on the application. Incorrect

feedback/information might be received by the controller, including conflicting information that cannot
be resolved or conflicts that may be resolved incorrectly. Correct feedback/information can be received
but ignored because the controller is disabled, turned off, busy with another task, is missing a process
model with the necessary conditions to update, or some other reason. Controller interpretation
problems may occur if the process model is updated incorrectly, the wrong process model is updated,
the feedback/information was thought to represent something else, or other errors.
Feedback/information may not be received when needed if the feedback is never received—especially if
the controller may assume a default value in lieu of feedback—or if feedback is delayed, including
information received out of order. Finally, the necessary feedback/information may not exist in the
control structure or in the design, resulting in an inadequate process model.

To identify these scenarios, start with a UCA and identify the controller process models that could
cause the UCA. Consider beliefs about current states or modes, previous states, capabilities, dynamic
behavior'?, previous behaviors or actions, future states or behaviors (predictions), beliefs about the
process currently being controlled, other controlled processes, other controllers in the system
(especially beliefs needed for coordination), actuators, sensors, or other relevant aspects of the system
or environment.

Once the relevant process models that can cause a UCA have been identified, identify how the
process models might occur due to received feedback or other information (or lack thereof).

10 Tuning-related issues in control theory can be captured here. Process models may include controller beliefs
about dynamic characteristics of a controlled process, and tuning problems can occur when those beliefs are
incorrect. For example, proportional, integral, and derivative terms in PID controller represent beliefs about the
dynamics of the controlled process. If those beliefs are incorrect, stability or other issues may occur and the
control algorithm may produce unsafe control actions as a result.
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Example:

UCA-2: BSCU Autobrake does not provide the Brake control action during landing roll when the
BSCU is armed [H-4.1]

Controller process model (belief) that could cause the UCA: Controller believes the aircraft
has already stopped on ground

Controller receives correct feedback but interprets it incorrectly: Wheel speed signals may
momentarily reach zero during anti-skid operation, causing flawed process model

Scenario 1 for UCA-2: The BSCU is armed and the aircraft begins landing roll. The BSCU does
not provide the Brake control action [UCA-2] because the BSCU incorrectly believes the
aircraft has already come to a stop. This flawed process model will occur if the received
feedback momentarily indicates zero speed during landing roll. The received feedback may
momentarily indicate zero speed during anti-skid operation, even though the aircraft is not
stopped.

Controller process model (belief) that could cause the UCA: Aircraft is in flight

Controller does not receive information when needed: Touchdown indication is not received

Scenario 2 for UCA-2: The BSCU is armed and the aircraft begins landing roll. The BSCU does
not provide the Brake control action [UCA-2] because the BSCU incorrectly believes the
aircraft is in the air and has not touched down. This flawed process model will occur if the
touchdown indication is not received upon touchdown. <Why? This scenario needs to be
finished.>

Any scenarios that involve inadequate feedback/information must be completed to explain why the
feedback/information might be inadequate. Inadequate feedback and information cannot be prevented
without understanding the reasons for it.

2) Causes of inadequate feedback and information

Whenever a scenario identifies feedback or information (or lack thereof) that can cause a UCA, we
need to examine where the feedback/information comes from to explain what could cause those
problems. Feedback comes from the controlled process (usually via sensors) and other information may
come from other processes, other controllers, or other sources in the system or the environment.

In general, scenarios related to inadequate feedback and information might involve:

- Feedback or information not received
o Feedback/info sent by sensor(s) but not received by controller
o Feedback/info is not sent by sensor(s) but is received or applied to sensor(s)
o Feedback/info is not received or applied to sensor(s)
o Feedback/info does not exist in control structure or sensor(s) do not exist
- Inadequate feedback is received
o Sensor(s) respond adequately but controller receives inadequate feedback/info
o Sensor(s) respond inadequately to feedback/info that is received or applied to sensor(s)
o Sensor(s) are not capable or not designed to provide necessary feedback/info
Scenarios involving feedback/info that is sent but not received or received inadequately may be
caused by transmission errors, lost communication, delays in communication (including feedback/info
sent but received in a different order), and other problems. Scenarios with an inadequate sensor
response or no response may be caused by sensor failures, loss of power to the sensor, inaccuracies in
sensor operation or measurement, sensor errors or misbehaviors, delays in sensor response, incorrect
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configuration, degradation or changes to the sensor over time, unanticipated conditions in the sensor
environment, or other problems. In addition, sensors may not be capable of providing the necessary
feedback due to design errors, specification flaws, incorrect assumptions about the controlled process,
sensors measuring the wrong conditions, sensors that report correct but misleading information (such
as zero wheel speed when wheels are locked but the aircraft is moving), or other problems.

We can finish scenarios that involve feedback/info by identifying why that feedback/info might be
received given the actual true state of the system (specified in the UCA context).
For example, let’s finish Scenario 2 for UCA-2 above:

True state from UCA context: Aircraft is in landing roll (See Scenario 2 above)

Information received: Touchdown indication is not received upon touchdown (see Scenario 2
above)

How this could happen given the true state: Reported wheel speed is insufficient, reported
weight on wheels is insufficient, wheel speed or weight on wheels indications are delayed, etc.

Scenario 2 for UCA-2: The BSCU is armed and the aircraft begins landing roll. The BSCU does not
provide the Brake control action [UCA-2] because the BSCU incorrectly believes the aircraft is in
the air and has not touched down. This flawed process model will occur if the touchdown
indication is not received upon touchdown. The touchdown indication may not be received
when needed if any of the following occur:

o Wheels hydroplane due to a wet runway (insufficient wheel speed)
Wheel speed feedback is delayed due to filtering used
Conflicting air/ground indications due to crosswind landing
Failure of wheel speed sensors
Failure of air/ground switches
o Etc.
As a result, insufficient deceleration may be provided upon landing [H-4.1]

O O O O

To include causes related to security, only one additional possibility needs to be considered here:
identify how the specified feedback and other information could be affected by an adversary. More
specifically: how could they be injected, spoofed, tampered, intercepted, or disclosed to an adversary?
For example, the following causes might be added to Scenario 2 above if security is included:

o Adversary spoofs feedback indicating insufficient wheel speed

o Wheel speed feedback is delayed due to adversary performing DoS attack
o Correct wheel speed feedback is intercepted and blocked by an adversary
o Adversary disables power to the wheel speed sensors

b) Identifying scenarios in which control actions are improperly executed or not executed

Hazards can be caused by UCAs, but they can also be caused without a UCA if control actions are
improperly executed or not executed. To create these scenarios, we must consider factors that affect
the control path as well as factors that affect the controlled process, as shown in Figure 2.19.
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Figure 2.19: Generic control loop illustrating 1) the control path and 2) other
factors that can affect the controlled process

1) Scenarios involving the control path

The control path transfers control actions to the controlled process. The control path may consist of
a simple actuator, may involve a series of actuators, or it may transfer control actions through a complex
network with switches, routers, satellites, or other equipment. Regardless of how it is implemented, we
must identify how problems along this path can cause control actions to be improperly executed or not
executed.

In general, scenarios involving the control path might include:

- Control action not executed
o Control action is sent by controller but not received by actuator(s)
o Control action is received by actuator(s) but actuator(s) do not respond
o Actuator(s) responds but the control action is not applied to or received by the
controlled process
- Control action improperly executed
o Control action is sent by controller but received improperly by actuator(s)
o Control action is received correctly by actuator(s) but actuator(s) respond inadequately
o Actuator(s) respond adequately, but the control action is applied or received improperly
at the controlled process
o Control action is not sent by controller, but actuators or other elements respond as if it
had been sent
Scenarios with control actions that are sent but improperly received or not received may be caused
by delays in communication (including control actions sent but received in a different order),
transmission errors, lost communication, and other problems. Scenarios with an improper actuator
response or no response may be caused by actuator failures, loss of power to the actuator, inaccuracies
in actuator operation, actuator errors or misbehaviors, delays in actuator response, other commands
received by the actuator (including potentially conflicting commands from other controllers), incorrect
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priority scheme used by the actuator, incorrect configuration, degradation or changes to the actuator
over time, unanticipated conditions in the actuator environment, or other problems.

To create these scenarios, start with a control action, identify what improper execution or no
execution means for your application, and identify how the control path could contribute to that
behavior.

Example:

Control action: BSCU sends Brake command
No execution: Brakes not applied

Improper execution: Insufficient braking applied

Scenario 1: The BSCU sends the Brake command upon landing, but the brakes are not applied
due to actuator failure. As a result, insufficient deceleration may be provided upon landing [H-
4.1]

Scenario 2: The BSCU sends the Brake command upon landing, but insufficient braking is applied
due to slow actuator response. As a result, insufficient deceleration may be provided upon
landing [H-4.1]

Scenario 3: The BSCU sends the Brake command upon landing, but it is not received by the
actuator due to a wiring error. As a result, insufficient deceleration may be provided upon
landing [H-4.1]

It is also important to consider how control actions may not be sent but actuators or other elements
respond as if a control action was sent. These scenarios will be similar to UCAs for control actions that
are provided.

Example:

Control action: BSCU does not send Brake command

Improper execution: Brakes are applied during normal takeoff (similar to UCA-2)

Scenario 4: The BSCU does not send Brake command, but the brakes are applied due to
hydraulic valve failure. As a result, acceleration may be insufficient during takeoff [H-4.6]

To include security problems, one additional possibility needs to be considered here: identify how
the specified control action could be affected by an adversary. More specifically: how could it be
injected, spoofed, tampered, intercepted, or disclosed to an adversary? For example:

Scenario 5: The BSCU sends the Brake command, but the brakes are not applied because an
adversary executes a denial of service attack that blocks the Brake command. As a result,
insufficient deceleration may be provided upon landing [H-4.1]

2) Scenarios related to the controlled process

Even if control actions are transferred or applied to the controlled process, they may not be effective
or they may be overridden by other controllers.

In general, scenarios related to the controlled process might include:

- Control action not executed
o Control action is applied or received by the controlled process but the controlled
process does not respond
- Control action improperly executed
o Control action is applied or received by the controlled process but the controlled
process responds improperly
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o Control action is not applied or received by the controlled process but the process
responds as if the control action had been applied or received

These scenarios may be caused by process inputs that are missing or inadequate (such as inadequate
hydraulic pressure, etc.), external or environmental disturbances, component failures, delayed response
by the process, errors or misbehaviors in the process, potentially conflicting commands received from
other controllers, previous control actions that were received or applied to the controlled process,
incorrect priority scheme used by the process, incorrect configuration, degradation or changes to the
process or the environment over time, unanticipated or unhandled conditions in the process
environment, or other problems.

To create these scenarios, select a control action and identify what factors can affect the controlled
process to make the control action ineffective.

Example:
Control action: BSCU sends Brake command

Scenario 6: The BSCU sends Brake command, but the brakes are not applied because the wheel
braking system was previously commanded into alternate braking mode (bypassing the BSCU).
As a result, insufficient deceleration may be provided upon landing [H-4.1]

Scenario 7: The BSCU sends Brake command, but the brakes are not applied due to insufficient
hydraulic pressure (pump failure, hydraulic leak, etc.). As a result, insufficient deceleration may
be provided upon landing [H-4.1]

Scenario 8: The BSCU sends Brake command, the brakes are applied, but the aircraft does not
decelerate due to a wet runway (wheels hydroplane). As a result, insufficient deceleration may
be provided upon landing [H-4.1]

To include security issues, the same additional possibility needs to be considered again: identify how
adversaries can interact with the control process to cause the same issues. For example:

Scenario 9: The BSCU sends Brake command, but the brakes are not applied because an
adversary injected a command that put the wheel braking system into alternate braking mode.
As a result, insufficient deceleration may be provided upon landing [H-4.1]

Tips to prevent common mistakes

The most common mistake is to identify individual causal factors rather than a scenario. For example,
you may be tempted to create list of factors like “wheel speed sensor failure”, “wheel speed feedback is
delayed”, “loss of power”, etc. The problem with listing individual factors outside the context of a
scenario is that it’s easy to overlook how several factors interact with each other, you can overlook non-
trivial and non-obvious factors that indirectly lead to UCAs and hazards, and you may not consider how
combinations of factors can lead to a hazard. Considering single factors essentially reduces to a FMEA

where only single component failures are considered.
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Inputs and Outputs for Identifying Scenarios

Figure 2.20 summarizes the inputs and outputs for the scenario identification step.

4) Identify Loss Scenarios

. . Loss scenarios
Identify scenarios that lead .

to Unsafe Control Actions 4

\ 4

®
System-level hazards Identify scenarios for Loss scenarios
Sub-hazards »| control actions improperly >
Control structure executed or not executed

Unsafe Control Actions

Figure 2.20: Overview of scenario identification

STPA Outputs and Traceability

Figure 2.21 shows the traceability that is maintained between various STPA outputs.

Losses

A

System-level Hazards

¢ System-level
constraints

A * *

Responsibilities
Unsafe
Control
Actions Controller
constraints
Scenarios Scenarios
(without UCAs) (with UCAs)

Figure 2.21: Traceability between STPA outputs

The control structure is closely related to every STPA output and therefore it is not explicitly shown in
Figure 2.21 for simplicity. These STPA outputs can be used in many different ways, including:

- Drive the system architecture

- Create requirements

- ldentify design recommendations

- ldentify mitigations and safeguards needed

- Define test cases and create test plans

- Drive new design decisions (if STPA is used during development)

- Evaluate existing design decisions and identify gaps and changes needed (if STPA is used after
the design is finished)

- Develop leading indicators of risk

- Design more effective safety management systems
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- Etc.

You should now have a basic understanding of how STPA is performed. We suggest that you try the
analysis on some of your own engineering problems. The Appendices provide some additional examples
that may be useful.

Summary and a Look Forward

This chapter has described the basic approach used in STPA. The next chapter explains how STPA can
be applied to the various phases and activities involved in system engineering. Chapter 4 provides
additional information and examples for using STPA in workplace safety. Up to this point, the examples
all involve technical systems but STPA can be used for any sociotechnical system. Chapter 5 shows how
to use STPA in organizational analysis and for emergent, system-wide properties other than safety.
Chapter 6 shows how STPA can be used to identify leading indicators of risk. Chapter 7 describes the use
of STAMP and STPA to design more effective safety management systems. Finally, Chapter 8 describes
what we have learned so far about how to integrate STPA into large organizations and projects.
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Chapter 3: Integrating STPA into the System Engineering Process
Nancy Leveson

Too often, system safety is isolated or separated in some way from the system engineering process.
The most common result is that safety is treated as an after-the-fact assurance activity. Because safety
cannot be assured into a system but must be designed in, safety-related design flaws are often found
late, when they cannot be fixed. At that point, the effort then focuses on trying to find arguments that
the identified flaws do not need to be fixed. When those arguments cannot be sustained, the efforts to
deal with the safety flaws often devolve to making expensive and not very effective solutions, such as
redundancy or expecting the operators of the system to detect and fix problems through far-from-ideal
procedural solutions.

This chapter of the handbook describes how to tightly integrate system safety analysis into the entire
system engineering process (see Appendix F for a basic introduction to system engineering). The result
will be a significant decrease in the cost of engineering for safety as well as greatly increased
effectiveness and, hopefully, fewer losses. It can also reduce rework, which reduces cost and schedule.

The figure below shows a simplified version of the standard system engineering V-model (or waterfall
model drawn with a kink in it). The feedback loops are omitted simply to declutter the diagram. This figure
is used to illustrate how to integrate STPA into the standard system engineering process. The potential
roles for STPA are shown in red. If you use a variant of the V-model or a different development model, it
should not be difficult to translate from the standard V-model to most any other model except, perhaps,
for those that omit the early processes (the upper two activities on the left leg of the V). In that case, you
should not be building safety-critical systems.

—-Generate operational safety requirements
-Generate safety management plan

-Monitor for operational assumptions and

-Identify safety and leading indicators

other system goals

Concept
Development

Operation, Maintenance, and

-Generate initial System Evolution

system requirements

-Refine system requirements
and constraints

Apply STPA to production
engineering and workplace safety

Requirements Manufacturing

Engineerin
-Generate component g9 9

requirements

System Test

; Identify critical tests and testing regimes
and Evaluation

-Assist with architectural design decisions System
Architecture

Development

-Refine STPA-generated requirements

System
Integration

Evaluate identified integration

-ldentify system integration requirements problems (should be greatly reduced)

and critical interface requirements

System Design and
Development

-Use in design and development decision making
-Generate test and evaluation requirements
-ldentify manufacturing constraints
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STPA can be used throughout the standard system engineering process, starting in the earliest
concept development stage. In essence, STPA can be used to generate high-level safety requirements
early in the concept development phase, refine them in the system requirements development phase.
The system requirements and constraints can then assist in the design of the system architecture and
more detailed system design and development. The STPA result process then goes hand in hand with
design and development as the analysis can be used to inform decisions as they are made. STPA
continues to be useful through assurance and manufacturing and provides important information for
use during operations

STPA fits into a model-based engineering process as it works on a model of the system (which is
refined as design decisions are made) although that model is different than the architectural models
usually proposed for model-based system engineering today. STPA promotes traceability throughout the
development process so decisions and designs can be changed with minimum requirements for redoing
previous analyses.

Finally, as noted in many places in this handbook, STPA can be applied to any emergent system
property in the system engineering and product lifecycle, not just safety.

Overall Process

STAMP and STPA contribute to all the activities in system engineering. The use of the analysis and its
results for the following activities are described in the rest of this chapter:

1. Definition of losses to be handled during development and operation

2. Identification of external constraints (including market and regulatory requirements) on the
system design

3. Identification of system-level hazards and the related requirements and constraints on system

behavior

Modeling of the system control structure

Refinement of hazards and constraints and allocation of functions to system components

Assist with making architectural, design, and implementation decisions

System Integration assistance

Generation of system test requirements

Control of manufacturing (production engineering, workplace safety)

10. Generation of operational safety requirements (including leading indicators of increasing risk)
and the safety management plan

11. Operational safety management including monitoring leading indicators

LWoeoNOU R~

1. Decisions about Losses to be Considered

While early Concept Development may differ in specific variants of the V-model, this stage usually
includes such activities as stakeholder and user analysis (needs analysis), customer requirements
generation, regulatory requirements review, feasibility studies, concept and trade space exploration,
and establishment of criteria for evaluation of the evolving and final design. Toward the end of this step,
there may be creation of a Concept of Operations.

Too often, this early stage of system engineering is not given the attention and effort it deserves and
development proceeds almost immediately with system architecture specification and high-level design.
Inadequate concept development may, however, lead to systems that are not usable by the customer,
only partially satisfy stakeholder needs, or are difficult to assure, maintain, and operate. While changes
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Cost of

may be made later in development to make up for omissions in the early concept development stage,
these later changes are increasingly expensive and disruptive as development proceeds.

Safety and security concerns, in particular, are often inadequately considered in early concept
exploration. Figure 3.1 shows a typical approach to handling these emergent system properties [Young
2017]. Major emphasis is often placed on responding to a loss only after it occurs in operations. In
addition, the major focus may be on adding “bolt-ons” (e.g., protection systems or intruder detection)
after the bulk of design and system engineering has already been done. Making changes like these late
in the development process is not only more expensive, the fixes are usually much less effective than if
safety and security had been built into the system from the beginning.

A Attack/Accident
Response

Cyber
Security/Safety
“Bolt-ons”
System
System Engineering
Concept Requirements
Development

Concept Requirements Design Build Operate

Figure 3.1: Safety and security need to be built into the system
from the beginning of development*

Instead, safety and security considerations should be initiated in the concept development stage and
the results used to generate the safety and security requirements for the overall system and its
components. Frola and Miller (1984)*? claimed that 70-90% of the design decisions related to safety are
made in the concept development stage and changing these decisions later may be infeasible or
enormously expensive. The same is true for security.

Safety may, in many system engineering processes, be considered at this stage, but usually in the
form of a Preliminary Hazard Analysis, which attempts to provide a risk assessment to determine how
much effort should be put into the identified hazards during development and operations and some
preliminary recommendations on how to eliminate or control them.

11 william Young, A System-Theoretic Security Analysis Methodology for Assuring Complex Operations Against
Cyber Disruptions, Ph.D. dissertation, MIT, 2017.

12 F, Ronald Frola and C.O. Miller, System Safety in Aircraft Acquisition, Technical Report, Logistics Management
Institute, Washington D.C., January 1984.
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Table 2.1. A typical PHA format®

PROGRAM: DATE:
ENGINEER: PAGE:
ITEM |HAZARD |CAUSE EFFECTS RAC |ASSESS- RECOMM-
COND MENTS ENDATIONS
Assigned |List the Describe If allowed to go |Hazard | Probability, |Recommended
number |nature of |whatis uncorrected, Level |possibility of |actions to
the causing the [what will be assign- |occurrence: | eliminate or
condition  |stated the effect or ment |-Likelihood |control the
condition |effects of the -Exposure hazard
to exist hazardous -Magnitude
condition

[Vincoli, 2005]

While most of the information in the table is available in the early concept development stage, the
probability or likelihood of the hazardous condition cannot be known before any detailed design has
been done or even after that time if the system is software-intensive. Historical information is not useful
when the system differs significantly from past systems. We have found using STPA that specific hazards
on real projects that have perfectly reasonable causal scenarios are often incorrectly dismissed early in
the system development process as “marginal” or extremely unlikely. Research by psychologists has
shown that humans are very bad at estimating probability or likelihood of unusual events.'

The biggest problem is that this type of PHA does not provide the information necessary to identify
the functional safety and security requirements for the system, which is the primary goal in early
concept analysis. Traditional hazard analysis techniques, which theoretically might be used for this
purpose, require a fairly detailed design and thus are not appropriate until much later in the
development process, when it is too late to provide the functional safety requirements for the design
effort.

An alternative often used in the aviation community is to generate probabilistic requirements to be
satisfied by the designed system [SAE ARP 4761]. Examples include “Loss of all wheel braking during
landing or rejected take off shall be less than 5E-7 per flight” and “Undetected inadvertent wheel
braking on one wheel without locking during takeoff shall be less than 5E-9 per flight” [SAE ARP 4761].
While these types of requirements might have been reasonable in the era when braking systems were
composed almost exclusively of hardware parts with known failure probabilities, the extensive use of
software in almost all systems make it impossible to ensure that these requirements are satisfied in the
software-intensive systems being engineered today.

STAMP and STPA provide the ability to generate the information needed in the concept development
stage—identifying stakeholder and user needs (needs analysis), generating customer goals and
requirements, reviewing regulatory requirements, evaluating feasibility, exploring system concepts and
the conceptual trade space, and establishing criteria for evaluation of the evolving and final design. The

13 Jeffrey Vincoli, Basic Guide to System Safety, John Wiley & Sons, 2005.

14 see, for example, the work of Tversky and Kahneman on heuristic biases.
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primary problems involved in many failed or problematic system engineering efforts stem from limited
understanding of the stakeholder needs and the appropriate system goals.

2. ldentification of external constraints (including market and regulatory
requirements) on the system design

The social system safety control structure can be used to understand the external (environmental)
social constraints on the system. Figure 3.2 shows an example sociotechnical control structure that is
similar to that common to many regulated industries. There is both a control structure for development
(on the left) and for operations on the right. Each industry will probably have its own sociotechnical
control structure, and it may differ by country. Only an example national structure is shown here but in
some industries (e.g., aviation and nuclear) there are overlying international control components.

Once you have modeled this structure, there will probably be few changes for each development
project undertaken but some differences may exist. The structure can be used to identify and document
regulatory and other external requirements for the system being developed.

3. Identification of Losses to be Considered

At the very early conceptual development stage, stakeholders need to specify unacceptable losses.
While many hazard analysis and system safety techniques handle only human death or injury and
property damage, STPA can handle any loss including environmental pollution, mission loss, monetary
losses, and even damage to company reputation. In other words, the losses represent any emergent
system property that the stakeholders want to avoid. Formally, an accident (or mishap, which is the
term used by the military) is any undesired or unplanned event or condition that results in what
stakeholders consider to be a loss. The aircraft example that has been used in this handbook starts from
the following accidents (losses):

A1l. Death or serious injury to aircraft passengers or people in the area of the aircraft
A2. Unacceptable damage to the aircraft or objects outside the aircraft

What is considered to be “unacceptable” must be defined by the stakeholders. Additional losses might
be specified if they are considered to be worth putting in effort to avoid them such as:

A3: Financial losses resulting from delayed operations
A4: Reduced sales due to damage to aircraft or airline reputation.
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Figure 3.2: An Example Safety Control Structure

4. Identification of system-level hazards and the related constraints on system

behavior

Once unacceptable losses are identified by the stakeholders, engineers can define the hazards that
are associated with those losses. The ultimate goal is to eliminate or, if not possible, to control or reduce
identified hazards during the system design activity.

The first problem is how to define the hazards. Although the term hazard is sometimes used to refer
to things outside the system boundaries, such as inclement weather in aviation, hazards in STPA are
limited to system states that are within the control of the system designer. For example, the hazard is
not the inclement weather but rather it is the aircraft being negatively impacted by inclement weather.
Constraints or controls may include staying clear of the weather or designing the aircraft to withstand
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the impact of the weather. Because system engineering is concerned with the design of the system, it
can have an impact only on the behavior of the system itself and cannot change things outside the
system boundary (i.e., in the system operating environment).

Sometimes a hazard is defined as a condition that could lead to an accident or a precondition for an
accident. But that definition includes almost everything, most of which cannot be eliminated or
controlled if the system is to operate at all. For example, an aircraft that is landing could lead to an
accident later on, but we cannot build a useful system where aircraft never land. As another example,
the hazard is not deceleration on landing (which is required for safe operations) but inability to
decelerate after landing.

So for practical reasons, hazards are defined as precursor states to an accident that the system
designers never want to occur and thus should be eliminated or controlled in the design process. A
formal definition was provided in the previous chapter.

Clearly, in order to eliminate the hazards in the system design, they need to be identified at the
beginning of the system development process. The specified hazards are used to create the behavioral
(functional but not probabilistic) safety requirements for the various system components, including the
software and human operators.

For the accidents Al and A2 above, the hazards include:
H1: Insufficient thrust to maintain controlled flight [A1, A2]
H2: Loss of airframe integrity [A1, A2]
H3: Violating minimum separation between aircraft and fixed or moving objects [A1, A2]
H4: An aircraft on the ground comes too close to moving or stationary objects or
inadvertently leaves the taxiway [Al, A2]
H5: Aircraft unable to take off when scheduled [A3, A4]
H6: etc.
These hazards lead to very high-level system constraints®® such as:
SC1: Sufficient thrust must be available to maintain controlled flight [H1]
SC2: Airframe integrity must be maintained under worst case conditions [H2]
SC3: Aircraft must satisfy minimum separation standards from fixed or moving objects [H3]
SC4: Aircraft on the ground must always maintain a safe distance from moving or stationary
and objects and remain within safe regions such as taxiways.
SC5: Aircraft must be able to take off within TBD minutes of scheduled departure [H6]
SC6: etc.

5. Modeling the Functional System Control Structure

While the first control structure model developed can include the environment in which the system
will operate (outside the system boundary), the system control structure in this step provides more
detail about what is within the system design space. The scope of the model (which is the definition of

15 Because negative requirements are often not allowed and changing safety constraints into positive statements is
sometimes not possible without losing important information, requirements and constraints are distinguished
here. Constraints are described using “must” or “must not” rather than “shall.” There is an additional advantage in
that a distinction is made between requirements (system goals or mission) and constraints on how those goals can
be achieved. The differentiation is useful when tradeoff decisions need to be made.
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the boundaries of the system to be considered) will depend on the goal of the system engineering
process. Multiple different models may be useful, with increasing detail being provided as the
conceptual design process proceeds. Details on building control structure models are provided in the
previous chapter. Some repetition is included here to make the chapters free-standing.

Looking at the control structure in Figure 3.2, the system to be designed might be the functional
system control structure within the lower right-hand box of the figure labeled “Operating Process.” STPA
is usually first performed on this system control structure to identify the very high-level system
requirements and constraints. During the conceptual design process, the control structure will be
refined and STPA is used to refine the associated system requirements and constraints.

For example, Figure 3.3 shows a very high-level functional control model of an aircraft, with just
three components: the pilot, the automated control system (which will probably consist of multiple
computers, but that decision is left for a later design stage), and the physical aircraft components. For
complex systems, such as aircraft, levels of abstraction can be used to zoom in on the pieces of the
control structure currently being considered. This type of top-down refinement is also helpful in
understanding the overall operation of the aircraft and in identifying interactions among the
components.

Note that there are no design decisions in this model beyond the fact that the system will be an
aircraft and the aircraft will include the general functions and design of any aircraft. Therefore, it is
appropriate for use at the early concept development stage. If any of the parts of the model are too
detailed for a particular application at this point in system engineering, then they can be removed. Note
that the pilot may be a human (onboard or on the ground) or automation (for unmanned aircraft) and
the aircraft could even be fixed wing, vertical lift, or VTOL (vertical takeoff and landing). No distinction is
necessary at this point of conceptual development. This generality allows decisions to be put off until
the more information is available and also allows reuse of the models and the analysis. Aircraft systems
being designed today may include several or all of these types of piloting configurations.

The role of the pilot, as shown in the Figure 3.3 control structure, is to manage the aircraft
automation and, depending on the design of the aircraft, directly or indirectly control takeoff, flight,
landing, and maneuvering the aircraft on the ground. The pilot and the automated controllers contain a
model of the system or subsystem that they are controlling. The automation is controlling the aircraft so
it must contain a model of the current aircraft state. The pilots also need a model of the aircraft state,
but in addition they need a model of the state of the automation and a model of the airport or airspace
in which they are operating. Many pilot errors can be traced to flaws in their understanding of how the
automation works or in their understanding of the current state of the automation.
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Figure 3.3: A High-Level Control Structure at the Aircraft Level

Pilots provide flight commands to the automation and receive feedback about the state of the
automation and the aircraft. In some designs, the pilot can provide direct control actions to the aircraft
hardware (i.e., not going through the automated system) and receive direct feedback. The dotted lines
represent this direct control and feedback. As the design is refined and more detailed design decisions
are made, these dotted line links may be eliminated or instantiated with specific content. The pilot
always has some direct sensory feedback about the state of the aircraft and the environment (unless the
pilot is on the ground, as in UAS) through various sensory modalities. At the same time, pilots often
have limited direct sensory feedback about the state of the automation and the physical components
the automaton is controlling; the information available to them will be limited to those items the
engineers deemed important for them to know. STPA helps to identify what this critical information is.
Some advanced flight controls today contain states and inputs that provide no feedback to the pilot at
all because the engineers have assumed they do not need it or have omitted it for some other reason.

STPA is done using this control structure to refine the very general system-level safety requirements
and constraints (examples shown above) developed from the system hazards. These new refined safety
requirements will specify the responsibilities, authority, and accountability of the three components in
the high-level control structure as well as the contents of the process models for each component and
the feedback requirements in order to maintain safe operation of the aircraft. For example, one
requirement may be that the pilot commands adequate thrust to ensure safe maneuvering of the
aircraft at each stage of operation [SC1] and another is that the pilot shall provide safe commands to
control movement on the ground [SC4]. Note that the system-level safety requirements are now starting
to be allocated to individual components in the safety control structure.

62



6. Refinement of Hazards and Safety Constraints and Allocation to System
Components

As the conceptual design process continues, the control structure will be refined as well as the
requirements. This refinement process results from the identification of unsafe control actions and their
causal scenarios appropriate to the current level of design detail. The result will be a set of safety-
related requirements that can be refined and used for the rest of the development process.

The system and safety requirements should precede creation of the system architecture used to
satisfy them. Of course, safety is not the only goal for any system and other requirements will need to
be considered in the development of the architecture. But, in our experience, architectures are often
developed before the safety (and often the system) requirements are identified. This inverted sequence
raises the likelihood that the architecture will not be optimized for and sometimes not even appropriate
for the system goals.

The architectural development will include the allocation of system requirements to the system
components. This process will include, for STPA, generation of causal scenarios for the unsafe control
actions generated at the system level. Deceleration is used as an example of this refinement process.
The relevant high-level system hazard here is

H4: An aircraft on the ground comes too close to moving or stationary objects or
inadvertently leaves the taxiway [Al, A2]

The specific accidents related to H4 occur when the aircraft operates on or near the ground and may
involve the aircraft departing the runway or impacting object(s) on or near the runway. Such accidents
may include hitting barriers, other aircraft, or other objects that lie on or beyond the end of the runway
at a speed that causes unacceptable damage, injury or loss of life.

H4 can be refined into the following deceleration-related hazards:
H4-1: Inadequate aircraft deceleration upon landing, rejected takeoff, or taxiing
H4-2: Deceleration after the V1 point during takeoff
H4-3: Aircraft motion when the aircraft is parked
H4-4: Unintentional aircraft directional control (differential braking)
H4-5: Aircraft maneuvers out of safe regions (taxiways, runways, terminal gates, ramps, etc.)

H4-6: Main gear wheel rotation is not stopped when (continues after) the landing gear is
retracted

The high-level system safety constraints associated with these hazards are a simple restatement of
the hazards as constraints on the design.

SC1: Forward motion must be retarded within TBD seconds of a braking command upon landing,
rejected takeoff, or taxiing (H4-1).

SC2: The aircraft must not decelerate after V1 absent direct pilot action (H4-2).

SC3: Uncommanded movement must not occur when the aircraft is parked (H4-3).

SC4: Differential braking must not lead to loss of or unintended aircraft directional control (H4-4)

16 The V1 point is that point in the takeoff sequence where it is more dangerous to stop the takeoff than to
continue. In some very rare circumstances, it is safer for the pilot to decelerate after the V1 point than to continue
the takeoff procedure. These situations (and a few others) are ignored in this example analysis to allow the results
to fit in a few pages.
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SC5: Aircraft must not unintentionally maneuver out of safe regions (taxiways, runways,
terminal gates and ramps, etc.) (H4-5)
SC6: Main gear rotation must stop when the gear is retracted (H4-6)

Note that all of these are very high-level, i.e., they start with consideration of the aircraft as a whole.
As explained in the previous chapter, they will be refined through an iterative process into a more
detailed set of functional safety requirements that are associated with specific system components,
including the crew, the software, and the component interactions. System safety requirements are
generated to prevent the causal scenarios identified by STPA. The process continues until the hazards
have all been adequately analyzed and handled in the design. The important point is that the system
behavior as a whole is considered first so that potential unsafe interactions among components can be
identified at the beginning of the process without having to try to consider all interactions later and
determine whether they are hazardous or not.

Figure 3.4 zooms in on the control structure model for the ground control function, which is where
deceleration occurs. There are three basic physical components being controlled: the reverse thrusters,
the spoilers, and the wheel braking system. Again, by including the larger functional control structure
rather than simply one of these, STPA can consider all interactions (both intended and unintended)
among the braking components related to the hazard being analyzed. There are clearly some design
decisions shown here in that the braking system is determined to contain reverse thrusters, spoilers,
and wheel brakes. This level of design detail, however, is still very general and high-level and satisfies
most aircraft.
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Figure 3.4: Deceleration Control Structure
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Examples of safety constraints on the interaction between the braking system components that can
be generated by STPA at this point in development include:

SC-BS-1: Spoilers must deploy when the wheel brakes are activated manually or automatically
above TBD speed.

SC-BS-2: Wheel brakes must activate upon retraction of landing gear.

SC-BS-3: Activation of ground spoilers must activate armed automatic braking (autobrake)
system.

SC-BS-4: Automatic braking system must not activate wheel brakes with forward thrust applied.

SC-BS-5: Automatic spoiler system must retract the spoilers when forward thrust is applied.

Note that because STPA includes humans, such as operators, maintainers, and even managers, STPA
provides a structured method to identify human errors influenced by the system design, such as mode
confusion and loss of situational awareness, that can lead to hazards. These human errors can arise due
to a loss of consistency (lack of synchronization) between the actual automation state and the
operator’s mental model of that state.

Figure 3.5 further zooms into the deceleration control structure by focusing on the functional
structure of the wheel brake system. Again, although only one component of the braking system is
considered in Figure 3.5, there are no assumptions about the physical design and implementation. STPA
starts without a specific design solution to potential problems. Instead, it starts from the basic required
functional behavior and identifies the conditions under which that behavior can be hazardous. Designers
can later decide on particular design solutions, such as redundancy or redesign of the functions,
necessary to satisfy the safety requirements derived through this analysis.

Figure 3.5 does include one important design decision to include an autobraking function, which is
common in modern aircraft. Pilots can preset an autobrake before they land in order to ensure
consistent braking action is applied. Autobraking can reduce pilot workload under gusty or icy conditions
and greatly reduce brake wear. If set, the autobrake will engage the wheel brakes at the specified time.
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Figure 3.5: The Control Structure for the Wheel Braking System

Table 3.1 shows some of the safety constraints generated by STPA for Figure 2.6 for the flight crew
(FC) and the Brake System Control Unit (BSCU). These are derived from the UCA Context Table
generated as described in earlier chapters of this handbook. Rationale is included in Table 3.1 as is
traceability information to assist in changing design decisions later without introducing unsafe features.

Table 3.1: Example STPA Generated System-Level Safety Constraints

Unsafe

. Description Rationale

Control Action

FC-R1 Crew must not provide manual braking before Could cause wheel lockup, loss of
touchdown [CREW.1c1] control, or tire burst

FC-R2 Crew must not stop manual braking more than TBD Could result in overspeed or runway
seconds before safe taxi speed reached [CREW.1d1]  overshoot

FC-R3 The crew must not power off the BSCU during Autobraking will be disarmed
autobraking [CREW.4b1]

BSCU-R1 A brake command must always be provided during Could result in not stopping within
RTO [BSCU.1al] the available runway length
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BSCU-R2 Braking must never be commanded before Could result in tire burst, loss of

touchdown [BSCU.1c1] control, injury, or other damage
BSCU-R3 Wheels must be locked after takeoff and before Could result in reduced handling
landing gear retraction [BSCU.1a4] margins from wheel rotation in
flight

The high-level system architecture could be defined using the system requirements and these safety
constraints at this point in development. The STPA-generated causal scenarios for violation of these
high-level safety constraints will provide more detailed design constraints and other information to
assist in the detailed architectural and system design process.

As design decisions are made, the STPA analysis is continually iterated and refined to assist the
designer in making tradeoffs and effective design decisions. For the braking example, a more detailed
control structure that shows some design decisions (including the valves used by the hydraulic
controller) is shown in Figure 3.6. The design decisions, involving the additional of valves and commands
related to the hydraulic controller might be at least partially the result of resolving the hazardous
scenarios already identified.

Continuing the STPA analysis at this more detailed level of design involves the identification of unsafe
control actions and the associated safety constraints related to the BSCU hydraulic controller (HC) when
controlling the three individual valves included in the refined design (Table 3.2):

Table 3.2: Example STPA Generated System-Level Safety Constraints
On the Wheel Brake System Control Structure

Unsafe . Description Rationale

Control Action

HC-R1 The HC must not open the green hydraulics shutoff Both normal and alternate braking
valve when there is a fault requiring alternate would be disabled.
braking [HC.1b1]

HC-R2 The HC must pulse the anti-skid valve in the event of  Anti-skid capability is needed to
a skid [HC.2a1] avoid skidding and to achieve full

stop in wet or icy conditions.

HC-R3 The HC must not provide a position command that Crew would be unaware that
opens the green meter valve when no brake uncommanded braking was being
command has been received [HC.3b1] applied.

HC-R4 The HC anti-skid must not release brakes when on Anti-skid system senses skid by
low speed taxi. sensing low wheel rotation or a

rapid change in wheel rotation
speed. This could lead to
inadvertent release of brakes
during low-speed taxi.

Once again, traceability is maintained with the unsafe control actions and scenarios from which these
functional design constraints were derived. Those control actions and scenarios are in turn traceable
back to higher levels of design and analysis. The result is an elaborate tree structure of a tracing of the
STPA analysis throughout the design process that will assist in making changes or in understanding
where certain constraints came from.
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Additionally, more detailed causal scenarios associated with the unsafe control actions can be
generated along with more design decisions about how to eliminate or mitigate the new scenarios.
Alternative designs might be analyzed to provide information about how to resolve tradeoffs between
alternative design choices. The process continues throughout the entire system development process.
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Figure 3.6: A More Detailed Version of the Wheel Brake System Control Structure

7. System Integration

System integration should be a lot less painful (at least from a safety standpoint) if STPA is used to
identify the integrated system safety requirements early in the development process. Unsafe
interactions among components, rather than being found now, should have been designed out of the
system before this late development phase. Any safety-related integrated system flaws found at this
point should be traced back to flaws in the development process (described above) and eliminated from
future development projects. Of course, the flaws found will need to be incorporated into the STPA
analysis to identify constraints to eliminate the flaws.
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8. Generation of System Test and Evaluation Requirements

The causal scenarios and other information generated in the STPA analysis during the activities on
the left-side of the “V” can be used to generate test requirements and evaluation programs. The test
requirements and planning will depend on the type of system and testing being done.

As an example, Dan Montes, a U.S. Air Force test pilot, in his MIT Ph.D. dissertation, describes how
STPA can be used in aircraft flight testing. Figure 3.7 shows a version of the example safety control
structure in Figure 3.2 augmented with a separate testing control structure embedded between the
development and operations control structures. Note that new hazards, unsafe control actions, and
causal scenarios may exist in the flight test program. For example, new contexts may need to be
considered for the test flight environment that might not exist in the normal operational environment
(e.g., testing the results of abnormal stress on the aircraft or applying extreme control actions to test for
recoverability). STPA can be applied to this system testing control structure, just as it is on any control
structure, and the results used for flight test safety planning and in generating flight test plans.

9. Control of Manufacturing (Production Engineering, Workplace Safety)

STPA has been applied successfully to both production engineering and to workplace safety.
Considerations of producibility (particularly with respect to safety in manufacturing) should be included
in the original STPA analysis if manufacturing and design for manufacturability is important for the
particular system being designed. The application of STPA to workplace safety, as well as its use in
organizational and managerial analysis, is described in separate chapters of this handbook.

10. Generation of Operational Safety Requirements (including leading indicators
of increasing risk and the safety management plan)

The causal scenarios that cannot be eliminated or adequately controlled in the system design must
be passed to the system operators so that they can implement operational controls. Leading indicators
of increasing risk, described in Chapter 6 of this handbook, can be derived from the STPA analysis
generated during the development process or during an operational safety analysis. The goal of these
leading indicators is to identify flawed assumptions about the use environment during design, hopefully
before any serious loss occurs, and also identify when the behavior of the system changes over time and
violates the original design assumptions about usage.

Requirements on system operators and maintainers can be derived directly from the STPA analysis
performed during development as both are included as components in the system design. The causal
scenarios will provide input to the operational requirements.
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11. Operational safety management including monitoring leading indicators

An operational risk management or safety management system should exist in every operational
environment. STPA results can be used to create the operational safety plan and safety requirements. In
addition, it can play a major role in identifying leading indicators and monitoring the operation of the
system to detect migration to states of higher risk (see the chapter in the handbook on this topic).

STPA can also play a role in incident and accident analysis and change management. Changes such as
system design changes (upgrades or mods), context changes (using the system in a different
environment or for a different purpose), and operations support changes (logistics supply chain or
maintenance practices) need to be considered as well as others.

Planned changes must always be subjected to a hazard analysis. This process should be made easier
with the traceability embedded into STPA so that change impact can be traced to specific system
hazards or shown not to impact them. Unplanned changes are handled through leading indicators
generated from the STPA analysis.
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Chapter 4: Workplace Safety using STPA
Nancy Leveson

Workplace or occupational safety has often focused on the worker’s behavior and not gone beyond
that. A system’s approach to workplace safety assumes that human behavior is affected by the system in
which it is embedded. The goal is to identify how to design the work environment in order to reduce
human error. The application of STPA in this environment is identical to the standard application of STPA
on a more technological system, but there are not many examples in the open literature so we have
included this chapter of the handbook.

Two examples are shown included: one involves people working with advanced automation and the
other involves the less technological workplace hazard involving the use of lockout/tagout (LOTO). In
both cases, the major difference between STPA and the standard approach to workplace safety today is
that STPA focuses on more than just creating procedures for humans to follow but instead looks at the
entire system to identify hazardous scenarios and how to eliminate or reduce them.

Because the first example below describes a real experimental application of STPA in a
manufacturing environment, details about the actual assessment procedure used and the cost can be
provided.

STPA Example for a Semi-Automated Manufacturing Process

The example here comes directly from the master’s thesis of Nathaniel Peper,'” in which he applied
STPA to a real aircraft assembly process where advanced automation (robotics) was being introduced
into the workplace. He describes the process as follows:

“... the process begins with sub-components for the aircraft entering the factory on the back of a
vehicle operated by a worker. Within the factory, two more workers are each responsible for each
driving an automated ground vehicle (AGV) by handheld control from an AGV docking and charging
location within the factory to connection points on a Product Transportation Vehicle (PTV) for the
incoming sub-component. After connecting to the PTV, the two drivers must collaboratively drive the
combined Product Transportation System (PTS) around the factory to the location of the sub-
component on the first mentioned vehicle. At this point, another group of workers will then work
together to move the sub-component from the vehicle to the PTS. The AGV operators will then drive
the PTS through the factory to a location at which the sub-component can be prepared for entry into
an automated manufacturing cell. Inside the cell are multiple robots and associated support
equipment that will perform the automated process of drilling holes in the sub-component and filling
the holes with additional components. When the sub- component, the PTS, the robotic cell, and the
operators are all ready, the cell operator and controller will assume control of the PTS and move it
through the automated process to perform its work statement. During this time, there will also be
concurrent work occurring to portions of the sub-component that are not inside the robotic cell
perimeter. Once the entire automated process is complete, workers will re-assume control of the PTS
and move it down the factory line to the next position for more manual work processes.”

The accident or loss here is:

17 Nathaniel Peper, Systems Thinking Applied to Automation and Workplace Safety, MIT Masters Thesis (Leaders
for Global Operations Program), June 2017.
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A:Death, Injury, or lllness to Humans

General hazards in this workplace:
H1: Exposure to uncontrolled energy (or energy at a level that could lead to a loss)
H2: Potentially injurious movement of the human body (or stress on the body) that could lead to
injury
H3: Exposure to toxic materials above a safe level
H4: Exposure to noise levels that could affect hearing
H5: Extended exposure to an environment not providing basic human health requirements

The team refined this set of hazards to one related to the specific application:
H1: Exposure to uncontrolled energy (or energy at a level that could lead to a loss)
H1.1: Violation of minimum separation between AGVs and external objects
H1.2: Violation of minimum separation between PTV and external objects
H1.3: Violation of minimum separation between AGVs and PTV combination and external objects
H1.4: Violation of minimum separation between Robotics and external objects
Other energy sources present in the current design that must be controlled for H1 including electrical,
thermal, pneumatic, hydraulic, gravitational, mechanical, and non-ionizing radiation (lasers).
H2 and H3 can be refined to be:
H2: Potentially injurious movement of the human body (or stress on the body) that could lead to
injury
H2.1: Potentially injurious movement of the human body (or stress on the body) that could lead
to injury during routine operation

H2.2: Potentially injurious movement of the human body (or stress on the body) that could lead
to injury during maintenance, servicing, or troubleshooting

H2.3: Potentially injurious movement of the human body (or stress on the body) that could lead
to injury during installation, repair, or overhaul

H3: Exposure to toxic materials above a safe level
H3.1: Workers are exposed to toxic chemicals above a safe level while operating the system
H3.2: Workers are exposed to toxic chemicals above a safe level while servicing the equipment
H3.3: Workers are exposed to toxic materials above a safe level from the manufacturing process
Changing these hazards into safety constraints is trivial and is not included here.

The eight-member cross-functional team that did the actual analysis was composed of members
from integration, engineering, operations, and maintenance. All the people involved were considered to
be leads or subject matter experts within their scope of responsibility for the system. The facilitator was
an MIT master’s student who was trained in STPA but had little familiarization with the new
manufacturing process being introduced to the plant.

The analysis was completed over the course of a three-week period. A group setting for the
assessment was only used twice during the process for less than three hours each, while the rest of the
assessment was completed in one-on-one meetings between the facilitator and the respective expert
for the portion of the system being discussed.
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Because STAMP and STPA are relatively new for the company and entirely new for the team, the first
group meeting was used as an instruction period to provide an overview of the methodology being used
and then to define the accidents (or losses) the team wanted to avoid, the hazards and system
boundaries, and an initial draft of the safety control structure for this application. After developing the
initial draft of the safety control structure, follow-on meetings were scheduled with each respective
expert to add detail to specific portions of the control structure. Because STPA uses a model of the
control structure, the assessment could be focused on specific control loops within the model after the
complete model was constructed. This ability to divide up the modeling and analysis process provided
for easy scheduling of meeting times and numerous meetings within the available time frames of
everyone within the group. During these meetings, details such as control actions, process models,
feedback, etc. were added and any conflicts or issues were resolved with the affected parties.

Once the appropriate level of detail was developed for the system safety control structure, the one-
on-one or small group discussions continued with STPA Steps 1 and 2. The results of this portion of the
analysis were then discussed in another group setting to confirm the individual findings of the group and
discuss potential mitigations for the system. This process occurred over the course of three weeks, and
the time spent in group, one-on-one meetings, and individual facilitator work totaled approximately 300
hours.

After the hazards were identified, control structures were developed for four different functions and
possible configurations of the system, and the RAAs (Responsibilities, Accountability, and Authority) of
each controller. The RAAs in the STAMP and STPA context are defined as:

Responsibilities: Basic control responsibilities, process model, and process model variables

Authority: Possible control actions controller could provide, how they are sent, when they are sent,
and where the control action is sent.

Accountability: What feedback is provided, when it is provided, where the feedback goes in the
control structure, how it is given.

Because this team was new to STPA, they began by developing the control structure as a group to
ensure that all of the major details were captured. The models were then refined by individuals and
small groups with the appropriate technical expertise on different parts of the system.

The four scenario-based models are shown in Figures 4.1, 4.2, 4.3, and 4.4.
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Only a sample of the rest of the STPA analysis is shown here. The more detailed segment of the AFV
safety control structure used in the example is shown in Figure 4.5.
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78



An example from the UCA table for the AGV follows:

Providing Causes

Not Providing

Incorrect

Stopped Too Soon/

separation with an
object [H1.1]

Control Hazard Causes Hazard Timing/Order Applied Too Long
Action

Operator UCA1: Drive control UCA3: Drive control | UCA4: Drive UCA7: Drive
provides module commanded module not control module control module
drive to drive when the commanded to drive | commanded to commanded to
commands movement will violate when the drive before or drive too long

to drive minimum separation movement will after a safe when the
control with an object [H1.1] prevent a violation path direction movement
module of minimum [H1.1] violates minimum

separation with
an object [H1.1]

UCA2: Drive control
module commanded to
drive when a human is
handling components
that will move [H1]

UCAS5: Drive
control module
commanded to
drive before a
human stops
handling
components that
will move [H1]

UCAG6: Drive
control module
commanded to
drive after a
human starts
handling
components that
will move [H1]

Causal scenarios for UCA1 (Drive control module commanded to drive when the movement will violate

minimum separation with an object [H1]) include the following examples:

Causal Scenario 1: The AGV is driven inappropriately because the operator is not familiar with its

operation.

e New operator that is not or inadequately trained

Causal Scenario 2: The AGV is driven toward an external object because the operator does not see the
object or misjudges the safe path.

e Operator inattention due to task overload, changes to the environment, or other external

factors.

e Operating in cluttered/restrictive areas
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e Objects are blocked from view by other workers, the vehicle itself, or the spar load on the
AGV/PTV/AGV combination

Causal Scenario 3: The AGV is driven into an external object because the AGV speed/steering settings
have changed.

e Modifications to the controller that the operator does not know about or is not familiar with
and operating under their previous understanding.
e Degradation to the controller that the operator does not know about or is not familiar with and
operating under their previous understanding.
e Modifications to the AGV system that the operator does not know about or is not familiar with
and operating under their previous understanding.
[ ]
Causal Scenario 4: The AGV is driven into an external object because the controller has a hardware
failure.

e Input is frozen and continues to be communicated even though the operator changes the
command.

Causal Scenario 5. The AGV is driven into an external object because the operator holds the drive
command for too long due to a delay in the command starting movement in the vehicle.

e Processing delays and computing overloads
e No timeout of control inputs to AGV

Causal Scenario 6: The AGV is driven int